K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2019

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left(1-ab\right)=a+b-ab=1\)

\(\Rightarrow ab-a-b+1=0\Leftrightarrow a\left(b-1\right)-\left(b-1\right)=0\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}}\) 

\(+,a=1\Rightarrow b=0\Rightarrow P=1\) 

\(+,b=1\Rightarrow a=0\Rightarrow P=1\)

22 tháng 11 2016

Bài 1: \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\) (1)

Từ \(\frac{a}{c}=\frac{c}{b}\Rightarrow ab=c^2\)

Thay vào (1) ta có:

\(\frac{a^2+ab}{b^2+ab}=\frac{a}{b}\Rightarrow\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\) (luôn đúng)

Vậy ta có điều phải chứng minh

15 tháng 7 2018

Bài 6: 

a2+b2=(a+b)2-2ab

<=> 2010  =36-2ab   

<=>ab=-987

M=a3+b3

=(a+b)(a2-ab+b2)

=6(a2+987+b^2)

=6(2010+987)

=17982

a: Theo đề, ta có: 

\(\dfrac{2a}{3}=\dfrac{b-1}{4}=\dfrac{c-2}{5}\)

\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b-1}{4}=\dfrac{c-2}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{\dfrac{3}{2}}=\dfrac{b-1}{4}=\dfrac{c-2}{5}=\dfrac{a-2b+c+2-2}{\dfrac{3}{2}-2\cdot4+5}=\dfrac{1}{-\dfrac{3}{2}}=-\dfrac{2}{3}\)

Do đó: a=-1; b-1=-8/3; c-2=-10/3

=>a=-1; b=-5/3; c=-4/3

b: Theo đề, ta có:

\(\dfrac{2a}{20}=\dfrac{b-1}{15}=\dfrac{c-2}{12}\)

hay \(\dfrac{a}{10}=\dfrac{b-1}{15}=\dfrac{c-2}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{10}=\dfrac{b-1}{15}=\dfrac{c-2}{12}=\dfrac{a-2b+c+2-2}{10-2\cdot15+12}=\dfrac{1}{-8}=\dfrac{-1}{8}\)

Do đó: a=-5/4; b-1=-15/8; c-2=-3/2

=>a=-5/4; b=-7/8; c=1/2

21 tháng 8 2018

a,

\(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\cdot\left(-6\right)=1-\left(-12\right)=13\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=1\cdot\left[13-\left(-6\right)\right]=19\)

\(x^5+y^5=\left(x+y\right)\left(x^2+y^2\right)^2-\left(2x^3y^2+xy^4+x^4y+2x^2y^3\right)=169-\left[2\left(xy\right)^2\left(x+y\right)+xy\left(x^3+y^3\right)\right]=169-\left[2\cdot36\cdot1-6\cdot19\right]=211\)

21 tháng 8 2018

b,

\(x^2+y^2=\left(x-y\right)^2+2xy=1+12=13\)

\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=1\cdot\left(13+6\right)=19\)

5 tháng 3 2019

Ta có : \(\left(a^2+b^2\right)^3=a^6+3a^4b^2+3a^2b^4+b^6\)

                                   \(=\left(a^6-6a^4b^2+9a^2b^4\right)+\left(b^6-6a^2b^4+9a^4b^2\right)\)

                                   \(=\left(a^3-3ab^2\right)^2+\left(b^3-3a^2b\right)^2\)

                                   \(=5^2+10^2\)

                                    \(=125\)

\(\Rightarrow S^3=125\)

\(\Rightarrow S=5\)

16 tháng 7 2019

bài 3:

b. x^3-6x^2+12x-8+6(x^2+2x+1)-(x^3+3x^2+9x-3x^2-9x-27)=97

=>x^3-6x^2+12x-8+6x^2+12x+6-x^3+27=97

=>24x+25=97

=>x=3