Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\) (1)
Từ \(\frac{a}{c}=\frac{c}{b}\Rightarrow ab=c^2\)
Thay vào (1) ta có:
\(\frac{a^2+ab}{b^2+ab}=\frac{a}{b}\Rightarrow\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\) (luôn đúng)
Vậy ta có điều phải chứng minh
Bài 6:
a2+b2=(a+b)2-2ab
<=> 2010 =36-2ab
<=>ab=-987
M=a3+b3
=(a+b)(a2-ab+b2)
=6(a2+987+b^2)
=6(2010+987)
=17982
a: Theo đề, ta có:
\(\dfrac{2a}{3}=\dfrac{b-1}{4}=\dfrac{c-2}{5}\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b-1}{4}=\dfrac{c-2}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{3}{2}}=\dfrac{b-1}{4}=\dfrac{c-2}{5}=\dfrac{a-2b+c+2-2}{\dfrac{3}{2}-2\cdot4+5}=\dfrac{1}{-\dfrac{3}{2}}=-\dfrac{2}{3}\)
Do đó: a=-1; b-1=-8/3; c-2=-10/3
=>a=-1; b=-5/3; c=-4/3
b: Theo đề, ta có:
\(\dfrac{2a}{20}=\dfrac{b-1}{15}=\dfrac{c-2}{12}\)
hay \(\dfrac{a}{10}=\dfrac{b-1}{15}=\dfrac{c-2}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{10}=\dfrac{b-1}{15}=\dfrac{c-2}{12}=\dfrac{a-2b+c+2-2}{10-2\cdot15+12}=\dfrac{1}{-8}=\dfrac{-1}{8}\)
Do đó: a=-5/4; b-1=-15/8; c-2=-3/2
=>a=-5/4; b=-7/8; c=1/2
a,
\(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\cdot\left(-6\right)=1-\left(-12\right)=13\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=1\cdot\left[13-\left(-6\right)\right]=19\)
\(x^5+y^5=\left(x+y\right)\left(x^2+y^2\right)^2-\left(2x^3y^2+xy^4+x^4y+2x^2y^3\right)=169-\left[2\left(xy\right)^2\left(x+y\right)+xy\left(x^3+y^3\right)\right]=169-\left[2\cdot36\cdot1-6\cdot19\right]=211\)
Ta có : \(\left(a^2+b^2\right)^3=a^6+3a^4b^2+3a^2b^4+b^6\)
\(=\left(a^6-6a^4b^2+9a^2b^4\right)+\left(b^6-6a^2b^4+9a^4b^2\right)\)
\(=\left(a^3-3ab^2\right)^2+\left(b^3-3a^2b\right)^2\)
\(=5^2+10^2\)
\(=125\)
\(\Rightarrow S^3=125\)
\(\Rightarrow S=5\)
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left(1-ab\right)=a+b-ab=1\)
\(\Rightarrow ab-a-b+1=0\Leftrightarrow a\left(b-1\right)-\left(b-1\right)=0\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}}\)
\(+,a=1\Rightarrow b=0\Rightarrow P=1\)
\(+,b=1\Rightarrow a=0\Rightarrow P=1\)