Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a - b = 3
=> ( a - b )2 = 9
=> a2 - 2ab + b2 = 9
=> 8 - 2ab = 9
=> 2ab = -1
=> ab = -1/2
a3 - b3 = a3 - 3a2b + 3ab2 - b3 + 3a2b - 3ab2
= ( a3 - 3a2b + 3ab2 - b3 ) + ( 3a2b - 3ab2 )
= ( a - b )3 + 3ab( a - b )
= 33 + 3.(-1/2).3
= 27 - 9/2 = 45/2
\(a-b=3\)
\(\left(a-b\right)^2=3^2\)
\(a^2-2ab+b^2=9\)
\(8-2ab=9\)
\(2ab=8-9\)
\(2ab=-1\)
\(ab=-\frac{1}{2}\)
\(\hept{\begin{cases}a-b=3\\ab=-\frac{1}{2}\end{cases}}\)
\(\hept{\begin{cases}a=b+3\\b\left(b+3\right)=-\frac{1}{2}\end{cases}}\)
\(\hept{\begin{cases}a=b+3\\b^2+3b+\frac{1}{2}=0\end{cases}}\)
\(\orbr{\begin{cases}b=\frac{-3+\sqrt{7}}{2}\\b=\frac{-3-\sqrt{7}}{2}\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}a=\frac{\sqrt{7}}{2}\\a=\frac{-\sqrt{7}}{2}\end{cases}}\)
TH 1
\(a=\frac{\sqrt{7}}{2};b=\frac{-3+\sqrt{7}}{2}\)
\(a^3+b^2=\frac{32-5\sqrt{7}}{8}\)
TH 2
\(a=\frac{-\sqrt{7}}{2};b=\frac{-3-\sqrt{7}}{2}\)
\(a^3+b^2=\frac{32+5\sqrt{7}}{8}\)
\(\left(a^2-b^2\right)^2\)
\(=\left(a-b\right)^2\left(a+b\right)^2\)
\(=\left(a^2-2ab+b^2\right)\left(a^2+2ab+b^2\right)\)
\(=\left[\left(a^2+b^2\right)-2ab\right]\left[\left(a^2+b^2\right)+2ab\right]\)
Thay \(a^2+b^2=8\) và \(ab=-2\) Ta có:
\(\left(8-2\cdot-2\right)\left(8+2\cdot-2\right)=\left(8+4\right)\left(8-4\right)=12\cdot4=48\)
\(a^2+b^2=2\left(8+ab\right)\)
=> \(a^2-2ab+b^2=16\)
=> \(\left(a-b\right)^2=16\)
=> a - b = 4 hoặc a - b = -4
Mà a < b
=> a - b < 0
=> a - b = -4
=> a = - 4 + b
Khi đó
\(P=\left(b-4\right)^2\left(-4+b\right)-b^2\left(b-1\right)-3\left(-4+b\right)\left(-4+1\right)+64\)
\(=\left(b^2-8b+16\right)\left(-4+b\right)-b^3+1-9\left(b-4\right)+64\)
\(=-4b^2+32b-64+b^3-8b^2+16b-b^3+1-9b+36+64\)
\(=-12b^2+49b+37\)
Chịu rồi! tách được thì tách không tách được chắc sai :v
\(\left(a-b\right)^2+2=?\) hở bạn thiếu đề hay sao ấy
a) \(a^3+b^3\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=6\left(a^2+2ab+b^2-3ab\right)\)
\(=6\left[\left(a+b\right)^2-3ab\right]\)
\(=6\left[6^2-3.8\right]\)
\(=6\left[36-24\right]=6.12=72\)
b) \(a^2+b^2\)
\(=a^2+2ab+b^2-2ab\)
\(=\left(a+b\right)^2-2.8\)
\(=6^2-16=36-16=20\)
a) \(\left(a-b\right)^2=3\)\(\Rightarrow a^2-2ab+b^2=3\)
mà \(a^2+b^2=8\)\(\Rightarrow8-2ab=3\)
\(\Rightarrow2ab=5\)\(\Rightarrow ab=\frac{5}{2}\)
Vậy \(ab=\frac{5}{2}\)
b) Ta có: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
mà \(a-b=2\)và \(a+b=4\)
\(\Rightarrow a^2-b^2=2.4=8\)
Vậy \(a^2-b^2=8\)
a) Ta có: \(\hept{\begin{cases}a^2+b^2=8\\\left(a-b\right)^2=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+b^2=8\\a^2-2ab+b^2=3\end{cases}}\)
=> \(a^2+b^2-\left(a^2-2ab+b^2\right)=8-3\)
<=> \(2ab=5\)
=> \(ab=\frac{5}{2}\)
b) Ta có: \(a^2-b^2=\left(a-b\right)\left(a+b\right)=2.4=8\)
lm lộn đề nên hơi chậm xíu^^
Bài 1:
$a^2+b^2+c^2=ab+bc+ac$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Vì $(a-b)^2, (b-c)^2, (c-a)^2\geq 0$ với mọi $a,b,c$
Do đó để tổng của chúng bằng $0$ thì $a-b=b-c=c-a=0$
$\Leftrightarrow a=b=c$
Mà $a+b+c=3$ nên $a=b=c=1$
$\Rightarrow Q=(1+1)^2+(1+2)^3+(1+3)^3=95$
Ta có: (a-b)2=3
=> a2-2ab+b2=3
mà a2+b2=8 => -2ab=-5
=> ab=5/2
\(2x^2+y^2+9=6x+2xy\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-3\right)^2=0\Leftrightarrow\hept{\begin{cases}x-3=0\\x-y=0\end{cases}}\Leftrightarrow x=y=3\)
\(\Rightarrow A=x^{2019}.y^{2020}-x^{2020}.y^{2019}+\frac{1}{9xy}=\frac{1}{27}\)
Ta có: \(a^2+b^2=20\)
\(ab=8\)
\(\left(a+b\right)^2=a^2+2ab+b^2\)
\(=2ab+20\)
\(=2.8+20\)
\(=36\)
\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(=-2ab+20\)
\(=-2.8+20\)
\(=4\)
\(\left(a+b\right)^2=36\Rightarrow a+b=6\)
\(\left(a-b\right)^2=4\Rightarrow a-b=2\)
\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(=2.6\)
\(=12\)