Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a/b=c/d=k
=>a=bk;c=dk
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}=\dfrac{ab}{cd}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
<=>(\(a^2+b^2\))cd=ab(\(c^2+d^2\))
<=>\(a^2cd+b^2cd=abc^2+abd^2\)
<=>\(a^2cd-abc^2-abd^2+b^2cd=0\)
<=>ac(ad-bc)-bd(ad-bc)=0
<=>ac-bd=0
<=>ac=bd
=>\(\dfrac{a}{b}=\dfrac{c}{d}\)
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\\ \Rightarrow cd\left(a^2+b^2\right)=ab\left(c^2+d^2\right)\\ \Rightarrow a^2cd+b^2cd=abc^2+abd^2\\ \Rightarrow a^2cd+b^2cd-abc^2-abd^2=0\\ \Rightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\\ \Rightarrow\left(ac-bd\right)\left(ad-bc\right)=0\\\Rightarrow \left[{}\begin{matrix}ac=bd\\ad=bc\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{a}{b}=\frac{d}{c}\\\frac{a}{b}=\frac{c}{d}\end{matrix}\right.\)
\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{ab}{cd}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{matrix}\right.\left(đpcm\right).\)
Chúc bạn học tốt!