Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/ không mất tính tổng quát ta giả sử: a = b + c thì
\(\frac{a^2+b^2-c^2}{2ab}=\frac{b^2+2bc+c^2-c^2}{2\left(b+c\right)b}=\frac{2b^2+2bc}{2b^2+2bc}=1\)
Tương tự
\(\frac{c^2+a^2-b^2}{2ac}=\frac{2c^2+2ac}{2c^2+2ac}=1\)
\(\frac{b^2+c^2-a^2}{2bc}=\frac{-2bc}{2bc}=-1\)
Vậy trong ba số luôn có 2 số = 1 và 1 số = - 1
\(\frac{a^2+b^2-c^2}{2ab}+\frac{-a^2+b^2+c^2}{2bc}+\frac{a^2-b^2+c^2}{2ca}=1\)
\(\Leftrightarrow a^2b+a^2c+b^2a+b^2c+c^2a+c^2b-2abc-a^3-b^3-c^3=0\)
\(\Leftrightarrow\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)=0\)
\(\Leftrightarrow a=b+c\)hoặc \(b=a+c\)hoặc \(c=a+b\)
Vậy trong 3 số có 1 số bẳng tổng 2 số kia
a. ĐK: a, b, c khác 0.
\(\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ac}=1\)
\(\Leftrightarrow\left[\frac{a^2+b^2-c^2}{2ab}-1\right]+\left[\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}\right]=0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2-c^2}{2ab}+\frac{1}{2c}\left[\frac{c^2-\left(a^2-b^2\right)}{b}+\frac{c^2+\left(a^2-b^2\right)}{a}\right]=0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2-c^2}{2ab}+\frac{1}{2c}\left[\frac{c^2\left(a+b\right)-\left(a^2-b^2\right)\left(a-b\right)}{ab}\right]=0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2-c^2}{2ab}+\frac{\left(a+b\right)\left(c^2-\left(a-b\right)^2\right)}{2abc}=0\)
\(\Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left(1-\frac{a+b}{c}\right)=0\)
\(\Leftrightarrow\left(a-b-c\right)\left(a-b+c\right)\left(c-a-b\right)=0\)
\(\Leftrightarrow a=b+c\)hoặc \(b=a+c\)hoặc \(c=a+b\).
b) Không mất tính tổng quả. G/s: a = b + c
Khi đó ta có:
\(\frac{a^2+b^2-c^2}{2ab}=\frac{\left(b+c\right)^2+b^2-c^2}{2\left(b+c\right)b}=1\)
\(\frac{b^2+c^2-a^2}{2bc}=\frac{b^2+c^2-\left(b+c\right)^2}{2bc}=-1\)
\(\frac{c^2+a^2-b^2}{2ca}=\frac{c^2+\left(b+c\right)^2-b^2}{2\left(b+c\right)c}=1\)
=> Điều phải chứng minh.