Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho A=\(\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^n-1}{3^n}\)
=> n-A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)
=>\(3\left(n-A\right)\)=\(1\)\(+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{3n-1}}\)
=> \(3\left(n-A\right)-\left(n-A\right)=2\left(n-A\right)=1-\frac{1}{3^n}\)
=>\(2\left(n-A\right)< 1\)
=>\(n-A< \frac{1}{2}\)
=> \(A< n-\frac{1}{2}\)
Deu la tui het do
Cho A = \(\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+......+\frac{3^n-1}{3^n}\) CMR A > n-\(\frac{1}{2}\)
\(A=\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^n-1}{3^n}\)
\(=\frac{3-1}{3}+\frac{9-1}{9}+\frac{27-1}{27}+...+\frac{3^n-1}{3^n}\)
\(=\left(\frac{3}{3}-\frac{1}{3}\right)+\left(\frac{9}{9}-\frac{1}{9}\right)+\left(\frac{27}{27}-\frac{1}{27}\right)+.....+\left(\frac{3^n}{3^n}-\frac{1}{3^n}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+....+\frac{1}{3^n}\right)\)
\(=n-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{3^n}\right)\)
Bây giờ ta chỉ cần chứng minh:\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^n}< \frac{1}{2}\) là xong!
Thật vậy:\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{n-1}}\)
\(\Rightarrow2B=1-\frac{1}{3^n}\)
\(\Rightarrow B=\frac{1}{2}-\frac{\frac{1}{3^n}}{2}< \frac{1}{2}\)
Ta có:\(A=n-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^n}\right)\)
\(>n-\frac{1}{2}\left(đpcm\right)\)(bất đẳng thức đổi chiều)