K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 3 2023

a.

Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-3;1\right)\\\overrightarrow{DC}=\left(1-x;1-y\right)\end{matrix}\right.\)

ABCD là hình bình hành \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}1-x=-3\\1-y=1\end{matrix}\right.\) \(\Rightarrow D\left(4;0\right)\)

b. 

\(\overrightarrow{AB}=\left(-3;1\right)\) nên đường thẳng AB nhận (1;3) là 1 vtpt

Phương trình AB:

\(1\left(x-2\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-11=0\)

c.

\(d\left(C;AB\right)=\dfrac{\left|1+3.1-11\right|}{\sqrt{1^2+3^2}}=\dfrac{7}{\sqrt{10}}\)

a: \(\overrightarrow{AB}=\left(-11;11\right);\overrightarrow{AC}=\left(-2;6\right)\)

Vì -11/-2<>11/6

nên A,B,C thẳng hàng

ABCD là hình bình hành

=>vecto DC=vecto AB

=>5-x=-11 và 4-y=11

=>x=16 và y=-7

b: \(\overrightarrow{BH}=\left(x+4;y-9\right)\); vecto BC=(9;-5); vecto AH=(x-7;y+2)

Theo đề, ta có: 

(x+4)/9=(y-9)/-5 và 9(x-7)+(-5)(y+2)=0

=>-5x-20=9y-81 và 9x-63-5y-10=0

=>-5x-9y=-61 và 9x-5y=73

=>x=481/53; y=92/53

c: Vì (d') vuông góc (d) nên (d'): 4x+3y+c=0

Thay x=-2 và y=3 vào (d'), ta được:

c+4*(-2)+3*3=0

=>c=-1

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Ta có: \(\overrightarrow {AB}  = \left( {10;5} \right),\overrightarrow {AC}  = \left( {6; - 4} \right),\overrightarrow {BC}  = \left( { - 4; - 9} \right)\)

+) Đường thẳng AB nhận vectơ \(\overrightarrow {AB}  = \left( {10;5} \right)\)làm phương trình chỉ phương và đi qua điểm \(A( - 1;1)\)nên có phương trình tham số là: \(\left\{ \begin{array}{l}x =  - 1 + 10t\\y = 1 + 5t\end{array} \right.\)

+) Đường thẳng AC nhận vectơ \(\overrightarrow {AC}  = \left( {6; - 4} \right)\)làm phương trình chỉ phương và đi qua điểm \(A( - 1;1)\)nên có phương trình tham số là: \(\left\{ \begin{array}{l}x =  - 1 + 6t\\y = 1 - 4t\end{array} \right.\)

+) Đường thẳng BC nhận vectơ \(\overrightarrow {BC}  = \left( { - 4; - 9} \right)\)làm phương trình chỉ phương và đi qua điểm \(B\left( {9;6} \right)\)nên có phương trình tham số là:      \(\left\{ \begin{array}{l}x = 9 - 4t\\y = 6 - 9t\end{array} \right.\)

b) Ta có vectơ pháp tuyến của hai đường thẳng AB và AC lần lượt là: \(\overrightarrow {{n_1}}  = \left( {1; - 2} \right),\overrightarrow {{n_2}}  = \left( {2;3} \right)\)

\(\cos \left( {AB,AC} \right) = \cos \left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right) = \frac{{\left| {1.2 + \left( { - 2} \right).3} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2}} \sqrt {{2^2} + {3^2}} }} = \frac{{4\sqrt {65} }}{{65}} \Rightarrow \left( {AB,AC} \right) = 60^\circ 15'\)

Vậy góc giữa hai đường thẳng AB và AC là \(60^\circ 15'\)

c) Đường thẳng BC nhận vectơ \(\overrightarrow {BC}  = \left( { - 4; - 9} \right)\) làm vectơ chỉ phương nên có vectơ pháp tuyến là \(\overrightarrow n  = \left( {9; - 4} \right)\) và đi qua \(B\left( {9;6} \right)\), suy ra phương trình tổng quát của đường thẳng BC là:

\(9.\left( {x - 9} \right) - 4\left( {y - 6} \right) = 0 \Leftrightarrow 9x - 4y - 57 = 0\)

Khoảng cách từ \(A( - 1;1)\) đến đường thẳng BC là:

\(d\left( {A,BC} \right) = \frac{{\left| {9.\left( { - 1} \right) - 4.1 - 57} \right|}}{{\sqrt {{9^2} + {{\left( { - 4} \right)}^2}} }} = \frac{{70\sqrt {97} }}{{97}}\)

a: Phương trình tổng quát là:

3(x-1)+1(y+3)=0

=>3x-3+y+3=0

=>3x+y=0

b: vecto AB=(-1;4)

Phương trình tham số của AB là:

\(\left\{{}\begin{matrix}x=1-t\\y=-3+4t\end{matrix}\right.\)

c: \(d\left(B;d\right)=\dfrac{\left|0\cdot3+1\cdot1\right|}{\sqrt{3^2+1^2}}=\dfrac{1}{\sqrt{10}}\)

26 tháng 4 2023

a. Gọi pt đường thẳng BC là: \(\Delta:y=ax+b\)

Vì pt đi qua 2 điểm B và C nên ta thay lần lượt các điểm vào, ta được:

\(\left\{{}\begin{matrix}-2=a.3+b\\-4=a.6+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+b=-2\\6a+b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{2}{3}\\0\end{matrix}\right.\)

Vậy pt đường thẳng BC là: \(y=-\dfrac{2}{3}x\)

b. \(d\left(A,\Delta\right)=\dfrac{\left|-\dfrac{2}{3}.\left(-1\right)+\left(-1\right).7\right|}{\sqrt{\left(-\dfrac{2}{3}\right)^2+\left(-1\right)^2}}=\dfrac{19\sqrt{13}}{13}\)

c. \(BC=\sqrt{\left(6-3\right)^2+\left(-4+2\right)^2}=\sqrt{13}\)

\(\Rightarrow S_{ABC}=\dfrac{\sqrt{13}.\dfrac{19\sqrt{13}}{13}}{2}=\dfrac{19}{2}\)