K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2020

Ta có:\(a^2-5a+2=0\Rightarrow a^2=5a-2\)

\(P=a^5-a^4-18a^3+9a^2-5a+2017+\frac{a^4-40a^2+4}{a^2}\)

\(=a^5-a^4-18a^3+9a^2-5a+2017+\frac{\left(a^2-2\right)^2-36a^2}{a^2}\)

\(=a^5-a^4-18a^3+9a^2-5a+2015+2+\frac{\left(a^2-2\right)^2-\left(6a\right)^2}{a^2}\)

\(=\left(a^2-5a+2\right)\left(a^3+4a^2+1\right)+2015+\frac{\left(a^2-2+6a\right)\left(a^2-2-6a\right)}{a^2}\)

\(=0\times\left(a^3+4a^2+1\right)+2015+\frac{\left(a^2-2+6a\right)\left(a^2-2-6a\right)}{a^2}\)

\(=0+2015+\frac{\left(a^2-2+6a\right)\left(a^2-2-6a\right)}{a^2}\)

\(=2015+\frac{\left(5a-2-6a-2\right)\left(5a-2+6a-2\right)}{a^2}\)Vì \(a^2=5a-2\)

\(=2015+\frac{-\left(a+4\right)\left(11a-4\right)}{a^2}\)

\(=2015+\frac{-\left(a^2+40a-16\right)}{a^2}\)

\(=2015+\frac{-\left[a^2+8\left(5a-2\right)\right]}{a^2}\)Vì \(a^2=5a-2\)

\(=2015+\frac{-\left(a^2+8a^2\right)}{a^2}\)

\(=2015+\frac{-9a^2}{a^2}\)

\(=2015+\frac{-9}{1}\)

\(=2015-9\)

\(=2006\)

Cre:hoidap247

22 tháng 12 2017

Ta có:

\(a^5-a^4-18a^3+9a^2-5a+2017+\frac{a^4-40a^2+4}{a^2}\)

\(=a^5-5a^4+2a^3+4a^4-20a^3+8a^2+a^2-5a+2+2015+\frac{a^4-40a^2+4}{a^2}\)

\(=\left(a^2-5a+2\right)\left(a^3+4a^2+1\right)+2015+\frac{a^4-40a^2+4}{a^2}\)

\(=2015+\frac{a^4-40a^2+4}{a^2}=\frac{a^4+1970a^2+4}{a^2}\)

\(a^2-5a+2=0\Rightarrow a^2-5a=-2\Rightarrow a^4-10a^3+25a^2=4\)

Ta có : \(\frac{a^4+1970a^2+4}{a^2}=\frac{a^4-10a^3+25a^2+10a^3-50a^2+20a+4a^2-20a+8+1991a^2-4}{a^2}\)

\(=\frac{4+\left(10a+4\right)\left(a^2-5a+2\right)-4+1991a^2}{a^2}\)

\(=\frac{1991a^2}{a^2}=1991\)

1 tháng 12 2018

bị phê

24 tháng 10 2020

a) A = (8x3 - 4x2) : (2x2) - (4x2 - 3x) : x + 2x

= 8x3 : (2x2) - 4x2 : (2x)2 - 4x2 : x + 3x : x + 2x

= 4x - 2 - 4x + 3 + 2x

= 1 + 2x

Thay x = -1 vào biểu thức A, ta có:

A = 1 + 2.(-1)

= -1

Vậy giá trị của biểu thức A tại x = -1 là -1

b) B = (18a4 - 27a3) : (9a2) - 10a3 : (5a)

= 18a4 : (9a2) - 27a3 : (9a2) - 2a2

= 2a2 - 3a - 2a2

= -3a

Thay a = -8 vào biểu thức B, ta có:

B = -3.(-8)

= 24

Vậy giá trị của biểu thức B tại a = -8 là 24

22 tháng 7 2023

a) \(\left(x-5\right)\left(a^2+5a+25\right)\)

\(=a^3-5^3\)

\(=a^3-125\)

b) \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)

\(=x^3+\left(2y\right)^3\)

\(=x^3+8y^3\)

a: \(A=25a^2+50a+25+10\left(a^2-2a-3\right)+a^2-6a+9\)

\(=26a^2+46a+34+10a^2-20a-30\)

\(=36a^2+26a+4\)

b: \(B=\dfrac{1}{4}\left(x^2-2x+1\right)+x^2-1+x^2+2x+1\)

\(=\dfrac{1}{4}x^2-\dfrac{1}{2}x+\dfrac{1}{4}+2x^2+2x\)

\(=\dfrac{9}{4}x^2+\dfrac{3}{2}x+\dfrac{1}{4}\)