K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LT
1
28 tháng 10 2020
Đặt \(A = a_{1} + a_{2} + \dots + a_{n}; B = a_{1}^3 + a_{2}^3 + \dots + a_{n}^3 \)
Ta có \(a_n^3-a_n=a_n\left(a_n^2-1\right)=a_n\left(a_n-1\right)\left(a_n+1\right)⋮6\)(tích ba số nguyên liên tiếp sẽ có một số chia hết cho 2, một số chia hết cho 3)
Ta có \(B-A=a_1\left(a_1-1\right)\left(a_1+1\right)+a_2\left(a_2-1\right)\left(a_2+1\right)+...+a_n\left(a_n-1\right)\left(a_n+1\right)\)
Suy ra \(B-A⋮6\)
=> A,B cùng chia hết cho 6 hoặc cùng không chia hết cho 6
=> nếu \(A⋮6\)thì \(B⋮6\)
=>ĐPCM
HT
0
+Nếu ai⋮30 thì ai5⋮30.
+Nếu ai chia 5 dư 1 thì ai5 chia 30 dư 1 (ai5 ≡ 15 ≡ 1 (mod 30))
+Nếu ai chia 5 dư 2 thì ai5 chia 30 dư 2 (ai5 ≡ 25 ≡ 2 (mod 30))
.
.
.
+Nếu ai chia 5 dư 29 thì ai5 chia 30 dư 29
Vậy ai5 luôn có cùng số dư với ai khi chia cho 30.
Do Tổng ai (i = 1..n) chia hết cho 30
Nên tổng ai5 (i = 1..n)chia hết cho 30.
Có vẻ cách này không hay lắm, nhưng kẹt thì đành làm vậy.