K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LT
1
28 tháng 10 2020
Đặt \(A = a_{1} + a_{2} + \dots + a_{n}; B = a_{1}^3 + a_{2}^3 + \dots + a_{n}^3 \)
Ta có \(a_n^3-a_n=a_n\left(a_n^2-1\right)=a_n\left(a_n-1\right)\left(a_n+1\right)⋮6\)(tích ba số nguyên liên tiếp sẽ có một số chia hết cho 2, một số chia hết cho 3)
Ta có \(B-A=a_1\left(a_1-1\right)\left(a_1+1\right)+a_2\left(a_2-1\right)\left(a_2+1\right)+...+a_n\left(a_n-1\right)\left(a_n+1\right)\)
Suy ra \(B-A⋮6\)
=> A,B cùng chia hết cho 6 hoặc cùng không chia hết cho 6
=> nếu \(A⋮6\)thì \(B⋮6\)
=>ĐPCM