K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2015

Từ giả thiết ta suy ra \(\frac{1}{a_1}-1=\frac{a_2+\cdots+a_{2011}}{a_1}\ge\frac{2010\sqrt[2010]{a_2\cdots a_{2011}}}{a_1}=\frac{2010\left(\sqrt[2010]{\frac{a_1\cdots a_{2011}}{a_1}}\right)}{a_1}.\)
Tương tự, ta thiết lập 2010 bất đẳng thức còn lại cho \(\frac{1}{a_2}-1,\ldots,\frac{1}{a_{2011}}-1\)  rồi nhân vào ta sẽ thu được
\(\left(\frac{1}{a_1}-1\right)\left(\frac{1}{a_2}-1\right)\cdots\left(\frac{1}{a_{2012}}-1\right)\ge\frac{2010^{2011}\left(\sqrt[2010]{\frac{a_1\cdots a_{2011}}{a_1}}\right)\cdots\left(\sqrt[2010]{\frac{a_1\cdots a_{2011}}{a_{2011}}}\right)}{a_1\cdots a_{2011}}=2010^{2011}\)