Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=5^{50}-5^{48}+5^{46}-5^{44}+....-5^4+5^2-1$
$5^2A=5^{52}-5^{50}+5^{48}-5^{46}+...-5^6+5^4-5^2$
$\Rightarrow A+5^2A=5^{52}-1$
$\Rightarrow 26A=5^{52}-1$
$\Rightarrow 5^{52}-1+1=5^n$
$\Rightarrow 5^{52}=5^n$
$\Rightarrow n=52$
a,( 393+390) : (317. 373)
= (33+1). 390 : 390
= 33+1
=27+1
=28
b,(556+57) : (549+1)
=57. (549+1) : (549+1)
=57= 78125
c,(722+721+720) ; (25+24+32)
= 720. (72+71+1) : [24. (2+1)+32 ]
= 720. 57 : [ 24. 3 +32 ]
= 720. 57 : ( 24+3) . 3
= 720. 57 : 19 . 3
= 720. 57 : 57
= 720
bài 1:
\(a,21^{15}=3^{15}\times7^{15}\)
\(27^5\times49^8=3^{15}\times7^{16}\)
Vậy: \(21^{15}< 27^5\times49^8\)
\(b,27^5=3^{15}\)
\(243^3=3^{15}\)
Vậy: \(27^5=243^3\)
Bài 2:
\(10^x+48=48^y\)
=100..0+48=\(48^y\)
=100...048=\(48^y\)
còn các bước tiếp mik chưa nghĩ ra cậu suy nghĩ thêm nhé
a) \(S=1+5+5^2+5^3+...+5^{28}\)
\(S=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{27}+5^{28}\right)\)
\(S=1\left(1+5\right)+5^2\left(1+5\right)+...+5^{27}\left(1+5\right)\)
\(S=\left(1+5^2+...+5^{27}\right).6⋮3\left(dpcm\right)\)
b) \(S=1+5+5^2+5^3+...+5^{28}\)
\(\Rightarrow5S=5+5^2+5^3+5^4+...+5^{29}\)
\(\Rightarrow5S-S=\left(5+5^2+5^3+5^4+...+5^{29}\right)-\left(1+5+5^2+5^3+...+5^{28}\right)\)
\(\Rightarrow4S=5^{29}-1\)
\(\Rightarrow4S+1=5^{29}-1+1\)
\(\Rightarrow4S=5^{29}=5^n\)
\(\Rightarrow n=29\)
a) \(S=1+5+5^2+5^3+...+5^{28}\)
\(\Rightarrow S=\left(1+5\right)+5^2\left(1+5\right)+...+5^{27}\left(1+5\right)\)
\(\Rightarrow S=6+5^2.6+...+5^{27}.6\)
\(\Rightarrow S=6\left(1+5^2+...+5^{27}\right)⋮6\)
\(\Rightarrow S=6\left(1+5^2+...+5^{27}\right)⋮3\)
\(\Rightarrow dpcm\)
b) Bạn xem lại đề
c) Câu hỏi của Yumani Jeng - Toán lớp 6 - Học toán với OnlineMath