Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Câu hỏi của Yumani Jeng - Toán lớp 6 - Học toán với OnlineMath
a) \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)
b) \(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)
c) \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)
d) \(x^2=x^3\Rightarrow x^3-x^2=0\Rightarrow x^2\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
e) \(3^{x-1}=27\Rightarrow3^{x-1}=3^3\Rightarrow x-1=3\Rightarrow x=4\)
f) \(3^{x+1}=9\Rightarrow3^{x+1}=3^2\Rightarrow x+1=2\Rightarrow x=1\)
g) \(6^{x+1}=36\Rightarrow6^{x+1}=6^2\Rightarrow x+1=2\Rightarrow x=1\)
h) \(3^{2x+1}=27\Rightarrow3^{2x+1}=3^3\Rightarrow2x+1=3\Rightarrow2x=2\Rightarrow x=1\)
i) \(x^{50}=x\Rightarrow x^{50}-x=0\Rightarrow x\left(x^{49}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}=1=1^{49}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
4n = 4096
4n = 212
n = 12
5n = 15625
5n = 56
n = 6
6n+3 = 216
6n+3 = 23.33
6n+3 = 63
n + 3 = 3
A = 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90
2A = 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100
2A - A = ( 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100 ) - ( 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90 )
A = 2^100 - 2^3
B = 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50
5B = 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51
5B - B = ( 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51 ) - ( 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50 )
4B = 5^51 - 1
B = 5^51 - 1 / 4
Câu 1:120a chia hết cho 12
36b chia hết cho 12
=>(120a+36b)chia het cho 12
\(Cau2:\)\(5^7+5^6+5^5\)=\(5^5\left(5^2+5+1\right)=5^5\cdot21\)
=>\(5^7+5^6+5^5chiahetcho21\)
C1: Vì 120 chia hết cho 12 nên 120a chia hết cho 12. (1)
Vì 36 chia hết cho 12 nên 36b chia hết cho 12. (2)
Từ (1) và (2) => (120a + 36b) chia hết cho 12
Lời giải:
$A=5^{50}-5^{48}+5^{46}-5^{44}+....-5^4+5^2-1$
$5^2A=5^{52}-5^{50}+5^{48}-5^{46}+...-5^6+5^4-5^2$
$\Rightarrow A+5^2A=5^{52}-1$
$\Rightarrow 26A=5^{52}-1$
$\Rightarrow 5^{52}-1+1=5^n$
$\Rightarrow 5^{52}=5^n$
$\Rightarrow n=52$