Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho A = 1 + 3 + 32 + 33 + ... + 311
a ) chứng minh A chia hết cho 13
b) chứng minh A chia hết cho 40
A=1+3+3^2+3^3+...+3^98+3^99+3^100
A=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)
A=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)
A=13x3^3x13+...+3^98x13
=> 13x(1+3+3^3+...+3^98)chia hết cho 13
Vậy A chia hết cho 13
a,ta có:
a+7b=(a+b)+6b
vì \(\hept{\begin{cases}\left(a+b\right)⋮3\\6b⋮3\end{cases}}\)
=>a+7a chia hết cho 3 với a+b chia hết cho 3
b,ta có:
2a-7b=2(a+b)-9b
vì\(\hept{\begin{cases}2\left(a+b\right)⋮3\\-9b⋮3\end{cases}}\)
=>2a-7b chia hết cho 3 với a+b chia hết cho 3
Để 5a + 3b và 13a + 8b chia hết cho 2016 thì
5a chia hết cho 2016 và 3b chia hết cho 2016
<=> 13a chia hết 2016 và 8b chia hết 2016
Ta có : 2016 không chia hết cho 5,
=> Nếu a và b không chia hết cho 2016 thì 5a + 3b không chia hết cho 2016 (a)
Ta có : 2016 không chia hết cho 13
=> Nếu a và b không chia hết cho 2016 thì 13a + 8b không chia hết cho 2016 (b)
Từ (a) và (b) Ta chứng minh được a và b chia hết cho 2016
\(C=1+3+3^2+3^3+...+3^{11}\\ a,C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+\left(3^6+3^7+3^8\right)+\left(3^9+3^{10}+3^{11}\right)\\ =13+3^3.\left(1+3+3^2\right)+3^6.\left(1+3+3^2\right)+3^9.\left(1+3+3^2\right)\\ =13+3^3.13+3^6.13+3^9.13\\ =13.\left(1+3^3+3^6+3^9\right)⋮13\)
Ý a phải chia hết cho 13 chứ em?
b: C=(1+3+3^2+3^3)+...+3^8(1+3+3^2+3^3)
=40(1+...+3^8) chia hết cho 40
a: C ko chia hết cho 15 nha bạn
Xét : a^5-a = a.(a^4-1) = a.(a^2-1).(a^2+1) = (a-1).a.(a+1).(a^2-4+5)
= (a-2).(a-1).a.(a+1).(a+2)+5.(a-1).a.(a+1)
Ta thấy a-2;a-1;a;a+1;a+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 ; 1 số khác chia hết cho 4 ; 1 số chia hết cho 5
=> (a-2).(a-1).a.(a+1).(a+2) chia hết cho 2.4.5 = 40 (1)
Lại có : p là số nguyên tố > 2 => p lẻ => p = 2k+1 ( k thuộc N sao )
=> (p-1).(p+1) = 2k.(2k+2) = 4.k.(k+1)
Vì k;k+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2
=> (p-1).(p+1) chia hết cho 8
=> 5.(p-1).p.(p+1) chia hết cho 5.8=40 (2)
Từ (1) và (2) => a^5-a chia hết cho 40
Tương tự : b^5-b ; c^5-c ; d^5-d đều chia hết cho 40
=> (a^5+b^5+c^5+d^5)-(a+b+c+d) chia hết cho 40
Mà a^5+b^5+c^5+d^5 chia hết cho 40 => a+b+c+d chia hết cho 40
Tk mk nha
Vì \(\hept{\begin{cases}5a+3b⋮1995\\13a+8b⋮1995\end{cases}\Rightarrow\hept{\begin{cases}8.\left(5a+3b\right)⋮1995\\3.\left(13a+8b\right)⋮1995\end{cases}\Rightarrow}\hept{\begin{cases}40a+24b⋮1995\\39a+24b⋮1995\end{cases}}}\)
=> (40a+24b)−(39a+24b)⋮1995
=> 40a+24b−39a−24b⋮1995
=> b⋮1995(1)
=> 8b⋮1995
Mặt khác 13a+8b⋮1995
=> 13a⋮1995Mà (13;1995)=1
=> a⋮1995(2)Từ (1) và (2)
=> a,b⋮1995(đpcm)
Vì 5a+3b \(⋮\)1995=>8(5a+3b) ⋮ 1995=> 40a+24b ⋮ 1995 (1)
Vì 13a+8b⋮ 1995=>3(13a+8b)⋮ 1995=>39a+24b⋮ 1995 (2)
từ (1),(2) => 40+24b -39a -24b ⋮ 1995 => a ⋮ 1995
bạn làm tương tự với b nhé