Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = ( 1 + 5 ) + ( 52 + 53 ) + .... + ( 52007 + 52008 )
=> A = 1.6 + 52.( 1 + 5 ) + .... + 52007.( 1 + 5 )
=> A = 1.6 + 52.6 + .... + 52007.6
=> A = 6.( 1 + 52 + ... + 52007 )
Vì 6 ⋮ 6 nên A ⋮ 6 ( đpcm )
=> A = ( 5 + 52 + 53 ) + ( 54 + 55 + 56 ) + .... + ( 52006 + 52007 + 52008 )
=> A = 5.( 1 + 5 + 5.5 ) + 54.( 1 + 5 + 5.5 ) + ... + 52006.( 1 + 5 + 5.5 )
=> A = 5.31 + 54.31 + ... +52006.31
=> A = 31.( 5 + 54 + ... + 52006 )
Vì 31 ⋮ 31 nên A ⋮31 ( đpcm )
a: \(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{48}\left(1+2\right)\)
\(=3\left(1+2^2+...+2^{48}\right)⋮3\)
b: \(2^0+2^1+2^2+...+2^{101}\)
\(=\left(1+2+2^2\right)+...+2^{99}\left(1+2+2^2\right)\)
\(=7\left(1+...+2^{99}\right)⋮7\)
c: 2A=2+2^2+...+2^101
=>A=2^101-1
Ta có A = 2A – A = 2( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 ) – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 )
= 2 + 4 + 2 3 + 2 4 + . . . + 2 51 – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 )
= 6 + 2 3 + 2 4 + . . . + 2 51 – ( 7 + 2 3 + . . . + 2 50 ) = 2 51 - 1
Suy ra : A + 1 = 2 51
Vậy A+1 là một lũy thừa của 2
Lời giải:
$A=(1+2)+(2^2+2^3)+....+(2^{2020}+2^{2021})$
$=3+2^2(1+2)+....+2^{2020}(1+2)$
$=3+3.2^2+....+3.2^{2020}$
$=3(1+2^2+....+2^{2020})\vdots 3$
Ta có đpcm.
\(A=1+2+2^2+...+2^{2018}\)
\(2A=2+2^3+2^4+...+2^{2019}\)
\(A=2A-A=1-2^{2019}\)
\(B-A=2^{2019}-\left(1-2^{2019}\right)\)
\(B-A=2^{2019}-1+2^{2019}\)
\(B-A=1\)
`#3107`
\(A=1+2+2^2+2^3+...+2^{2018}\) và \(B=2^{2019}\)
Ta có:
\(A=1+2+2^2+2^3+...+2^{2018}\)
\(2A=2+2^2+2^3+...+2^{2019}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2019}\right)-\left(1+2+2^2+2^3+...+2^{2018}\right)\)
\(A=2+2^2+2^3+...+2^{2019}-1-2-2^2-2^3-...-2^{2018}\)
\(A=2^{2019}-1\)
Vậy, \(A=2^{2019}-1\)
Ta có:
\(B-A=2^{2019}-2^{2019}+1=1\)
Vậy, `B - A = 1.`
a) Ta có A = 1 + 2 + 22 + 23 + .... + 28 + 29
= (1 + 2) + (22 + 23) + .... + (28 + 29)
= (1 + 2) + 22.(1 + 2) + .... + 28 . (1 + 2)
= 3 + 22 .3 + .... + 28 . 3
= 3.(1 + 22 + .... + 28) \(⋮\)3
Vậy A \(⋮\)3 (đpcm)
b) A = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29
= (1 + 2 + 22 + 23 + 24) + (25 + 26 + 27 + 28 + 29)
= (1 + 2 + 22 + 23 + 24) + 25.(1 + 2 + 22 + 23 + 24)
= 31 + 25 . 31
= 31.(1 + 25) \(⋮\)31
Vậy A \(⋮\)31 (ĐPCM)
\(a;A=1+2+2^2+...+2^9\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^8\left(1+2\right)\)
\(=\left(1+2\right)\left(1+2^2+...+2^8\right)\)
\(=3\left(1+2^2+...+2^8\right)⋮3\)
\(b;A=\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)\)
\(=31+2^5\cdot31=31\left(1+2^5\right)⋮31\)