\(A=1+2+2^2+...+2^{2019}+2^{2020}\)

Tìm số dư khi A chia cho 7 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

\(A=1+2+2^2+...+2^{2019}+2^{2020}\)

\(A=1+2+\left(2^2+2^3+2^4\right)+...+\left(2^{2018}+2^{2019}+2^{2020}\right)\)

\(A=3+2^2\left(1+2+2^2\right)+...+2^{2018}\left(1+2+2^2\right)\)

\(A=3+2^2.7+....+2^{2018}.7\)

\(A=3+7\left(2^2+....+2^{2018}\right)\)

Vì 3 ko chia hết cho 7

=> A ko chia hết cho 7

=> A dư 3

6 tháng 3 2020

Ta có :

\(A=\left(1+7+7^2\right)+\left(7^3+7^4+7^5\right)+...+\left(7^{2018}+7^{2019}+7^{2020}\right)\)

\(=\left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+...+7^{2018}\left(1+7+7^2\right)\)

\(=\left(1+7+7^2\right)\left(1+7^3+7^6+...+7^{2018}\right)\)

\(=57\cdot\left(1+7^3+7^6+...+7^{2018}\right)\)

\(=19\cdot3\cdot\left(1+7^3+7^6+...+7^{2018}\right)⋮19\) (đpcm)

6 tháng 3 2020

\(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\)

\(\Leftrightarrow A=\left(1+7+7^2\right)+\left(7^3+7^4+7^5\right)+....+\left(7^{2018}+7^{2019}+7^{2020}\right)\)

\(\Leftrightarrow A=\left(1+7+49\right)+7^3\left(1+7+49\right)+...+7^{2018}\left(1+7+49\right)\)

\(\Leftrightarrow A=57+7^3\cdot57+...+7^{2018}\cdot57\)

\(\Leftrightarrow A=57\left(1+7^3+....+7^{2018}\right)\)

\(\Leftrightarrow A=3\cdot19\left(1+7^3+...+7^{2018}\right)\)

=> A chia 19 dư 0

27 tháng 11 2017

Dư 1 nha bạn . 

27 tháng 11 2017
các bạn giải chi tiết giúp mik nha
28 tháng 10 2015

Ta có: A=20+21+22+23+…+22009+22010

=>A=(20+21+22)+…+(22008+22009+22010)

=>A=(20+21+22)+…+22008.(20+21+22)

=>A=7+…+22008.7

=>A=(1+…+22008).7 chia hết cho 7

=>A chia hết cho 7

=>A chia 7 dư 0

9 tháng 12 2015

dư 1

hỏi mãi 

1 cau

28 tháng 3 2020

\(\hept{\begin{cases}A=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}^{ }\\B=-\frac{1}{2020}-\frac{7}{2019^2}-\frac{5}{2019^3}-\frac{3}{2019^4}\end{cases}}\)

=>\(A-B=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}+\frac{1}{2020}+\frac{7}{2019^2}+\frac{5}{2019^3}+\frac{3}{2019^4}\)

\(=>A-B=\left(-\frac{3}{2019^2}+\frac{7}{2019^2}\right)+\left(-\frac{7}{2019^4}+\frac{3}{2019^4}\right)\)

=>\(A-B=\frac{4}{2019^2}+-\frac{4}{2019^4}\)

=>\(A-B=\frac{2019^2.4}{2019^4}-\frac{4}{2019^4}\)

=>\(A>B\)

cách này mình tự nghĩ 

28 tháng 3 2020

thank you \(v\text{er}y^{1000000000000}\)much

\(n=2^{2019}-2^{2018}-...-2^1-1=2^{2019}-\left(2^{2018}+2^{2017}+...+2^1+1\right)\)

Đặt\(S=1+2+...+2^{2017}+2^{2018}\)

\(\Rightarrow2S=2+2^2+...+2^{2018}+2^{2019}\)

\(\Rightarrow2S-S=\left(2+2^2+...+2^{2018}+2^{2019}\right)-\left(1+2+...+2^{2017}+2^{2018}\right)\)

\(\Rightarrow S=2^{2019}-1\)

\(n=2^{2019}-S\)

\(\Rightarrow n=2^{2019}-\left(2^{2019}-1\right)=1\)

\(\Rightarrow A=3^1+2^1+2020^1=2025\)

Happy new year :)))

25 tháng 1 2020

Ta có : n = 22019 - 22018 - 22017 - .... - 22 - 2 - 1 (1)

=> 2n = 22020 - 22019 - 22018 - .... - 23 - 22 - 2 (2)

Lấy (2) trừ (1) theo vế ta có :

2n - n = (22020 - 22019 - 22018 - .... - 23 - 22 - 2) - (22019 - 22018 - 22017 - .... - 22 - 2 - 1)

  => n = 22020 - 22019 - 22019 + 1

  => n = 22020 - 2.22019 + 1 = 22020 - 22020 + 1 = 1

  Khi đó A = 31 + 21 + 20201 = 3 + 2 + 2020 = 2025

Vậy A = 2025

30 tháng 6 2020

\(f\left(x\right)=ax^{2\: }+bx+c\)

\(\Rightarrow f\left(1\right)=a\cdot1^2+b\cdot1+c=a+b+c\)

Ta có: \(\hept{\begin{cases}a+3c=2019\\a+2b=2020\end{cases}}\)

\(\Rightarrow a+3c+a+2b=2019+2020\)

\(\Leftrightarrow2a+2b+3c=4039\)

\(\Leftrightarrow2\left(a+b+c\right)+c=4039\)

Vì a,b,c không âm => 2(a+b+c)\(\le2\left(a+b+c\right)+c=4039\)

\(\Leftrightarrow2\left(a+b+c\right)=4039\)

\(\Leftrightarrow a+b+c=\frac{4039}{2}\)

\(\Leftrightarrow a+b+c=2019\frac{1}{2}\)

\(\Rightarrow f\left(1\right)\le2019\frac{1}{2}\left(đpcm\right)\)