Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = 21 + 22 + 23 + 24 +...+ 22010
=> A = (2 + 22) + 22.(2 + 22) + ... + 22008.(2 + 22)
=> A = 6 + 22.6 + ... + 22008.6
=> A = 6 . (1 + 22 + ... + 22008) \(⋮\)3 => A \(⋮\)3.
A = 21 + 22 + 23 +...+ 22010
=> A = (21 + 22 + 23) + ... + (22008 + 22009 + 22010)
=> A = 14 + ... + 22007.(2 + 22 + 23)
=> A = 14 + ... + 22007.14
=> A = 14.(1+...+22007) \(⋮\)7 => A \(⋮\)7
b) Để B chia hết cho 4 thì bạn gộp 2 số lại ( được 1 thừa số là 12 ) => B chia hết cho 4.
Để B chia hết cho 7 thì bạn gộp 3 số lại ( được 1 thừa số là 39 ) => B chia hết cho 13.
Sorry, bài B không làm chặt chẽ được vì mình bận đi học rồi.
Chúng bạn học tốt.
\(A=\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{4}\right)^2+...+\left(\dfrac{1}{2013}\right)^2\)
\(A=\left(\dfrac{1}{2+3+4+...+2013}\right)^2\)
\(A=\left(\dfrac{1}{\left(2013-2\right)+1}\right)^2\)
\(A=\left(\dfrac{1}{2012}\right)^2\)
\(A=\dfrac{1}{2012\cdot2012}\)
\(\Rightarrow A=\dfrac{1}{2012}< \dfrac{3}{4}\)
Ta có: \(A=1+4+4^2+...+4^{99}\)
\(\Rightarrow4A=4+4^2+4^3+...+4^{100}\)
\(\Rightarrow4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\)
\(\Rightarrow3A=4^{100}-1\)
\(\Rightarrow A=\dfrac{4^{100}-1}{3}\)
Vì \(4^{100}-1< 4^{100}\) nên \(\dfrac{4^{100}-1}{3}< \dfrac{4^{100}}{3}\)
\(\Rightarrow A< \dfrac{B}{3}\left(đpcm\right)\)
Vậy...
sửa đề: A=1+2+2^2+...+2^2007
a: \(2\cdot A=2+2^2+2^3+...+2^{2008}\)
b: \(2\cdot A=2^{2008}+2^{2007}+...+2^3+2^2+2\)
\(A=2^{2007}+2^{2006}+...+2+1\)
=>\(2A-A=2^{2008}-1\)
=>\(A=2^{2008}-1\)