Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A=1+21+22+...+2100+2101A=1+21+22+...+2100+2101
= (1+2+22)+(23+24+25)+...+(299+2100+2101)(1+2+22)+(23+24+25)+...+(299+2100+2101)
= (1+2+22)+22.(1+2+22)+...+299.(1+2+22)(1+2+22)+22.(1+2+22)+...+299.(1+2+22)
= (1+2+22).(1+22+26+...+299)(1+2+22).(1+22+26+...+299)
= 7.(1+22+26+...+299)⋮77.(1+22+26+...+299)⋮7
(Vì 7⋮7)
\(A=1+2^1+2^2+...+2^{100}+2^{101}\)
\(\Rightarrow A=\left(1+2^1+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{99}+2^{100}+2^{101}\right)\)
\(\Rightarrow A=\left(1+2^1+2^2\right)+2^3\left(1+2^1+2^2\right)+...+2^{99}\left(1+2^1+2^2\right)\)
\(\Rightarrow A=\left(1+2^1+2^2\right)\left(1+2^3+...+2^{99}\right)\)
\(\Rightarrow A=7\left(1+2^3+...+2^{99}\right)⋮7\)
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả
a)đặt tên biểu thức là C . Ta có :
C = 1 + 4 + 42 + 43 + ... + 42012
C = ( 1 + 4 + 42 ) + ( 43 + 44 + 45 ) + ... + ( 42010 + 42011 + 42012 )
C = 21 + 43 . ( 1 + 4 + 42 ) + ... + 42010 . ( 1 + 4 + 42 )
C = 21 + 43 . 21 + ... + 42010 . 21
C = 21 . ( 1 + 43 + ... + 42010 )
=> C chia hết cho 21
b) đặt tên biểu thức là B . Ta có :
B = 1 + 7 + 72 + ... + 7101
B = ( 1 + 7 ) + ( 72 + 73 ) + ... + ( 7100 + 7101 )
B = 8 + 72 . ( 1 + 7 ) + ... + 7100. ( 1 + 7 )
B = 8 + 72 . 8 + ... + 7100 . 8
B = 8 . ( 1 + 72 + ... + 7100 )
=> B chia hết cho 8
tương tự
a, Ta co : M= ( 1 +4 + 42 ) + ( 43 + 44 + 45 ) +.......................+ ( 42010 + 42011 +42012 )
M = 1. (1+4+16 ) +43. (1+4+16 ) +.........................+ 42010. ( 1+4 +16
M = 1, 21 + 43. 21 +..............................................+ 42010 .21
M= 21.(1+43+.................................... + 42010 ) CHIA HẾT 21
TƯƠNG TƯ
các bạn có thể cho mình biết được không,đang cần gấp lắm.
bkjashashfwhfuafghvAfweuytqUSDGSGFUGDU8DY1YE28W382UDFHDGIUYF8W37 R83YHJSGHFSCJHJAGHHFGKJHFJFGSGSHD
\(A=1+2^1+2^2+........+2^{100}+2^{101}\)
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+....\left(2^{99}+2^{100}+2^{101}\right)\)
\(A=\left(1+2+2^2\right)+2^2.\left(1+2+2^2\right)+......+2^{99}.\left(1+2+2^2\right)\)
\(A=\left(1+2+2^2\right).\left(1+2^2+2^6+....+2^{99}\right)\)
\(A=7.\left(1+2^2+2^6+......+2^{99}\right)\text{⋮}7\)
\(A\text{⋮}7\left(đpcm\right)\)