K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2016

11x11=121

nha bạn

Bài bổ xung:

SBT = ST + hiệu

tổng sô trừ và hiệu là:(số bị trừ)

2008 : 2 = 1004

số trừ là:

(1004 - 12) : 2 = 496

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:

$a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}$

$\Rightarrow (a^{101}+b^{101})^2=(a^{100}+b^{100})(a^{102}+b^{102})$

$\Rightarrow a^{202}+b^{202}+2a^{101}.b^{101}=a^{202}+b^{202}+a^{100}b^{102}+a^{102}b^{100}$

$\Rightarrow 2a^{101}b^{101}=a^{100}b^{102}+a^{102}b^{100}$

$\Rightarrow a^{100}b^{100}(a^2+b^2-2ab)=0$

$\Rightarrow a^{100}b^{100}(a-b)^2=0$

$\Rightarrow a=0$ hoặc $b=0$ hoặc $a=b$

Nếu $a=0$ thì:

$b^{100}=b^{101}=b^{102}$

$\Rightarrow b^{100}(b-1)=0$

$\Rightarrow b=0$ hoặc b=1$ (đều tm) 

$\Rightarrow a^{2022}+b^{2023}=0$ hoặc $1$

Nếu $b=0$ thì tương tự, $a=0$ hoặc $a=1$

$\Rightarrow a^{2022}+b^{2023}=0$ hoặc $1$

Nếu $a=b$ thì thay $a=b$ vào điều kiện đề thì:

$2b^{100}=2b^{101}=2b^{102}$

$\Rightarrow b^{100}=b^{101}=b^{102}$

$\Rightarrow b^{100}(b-1)=0$

$\Rightarrow b=0$ hoặc $b=1$ (đều tm) 

Nếu $a=b=0\Rightarrow a^{2022}+b^{2023}=0$

Nếu $a=b=1\Rightarrow a^{2022}+b^{2023}=2$

Vậy $a^{2022}+b^{2023}$ có thể nhận giá trị $0,1,2$

27 tháng 6

=2 nha

NV
18 tháng 8 2021

\(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)

\(\Rightarrow\left(a^{100}+b^{100}\right)\left(a^{102}+b^{102}\right)=\left(a^{101}+b^{101}\right)^2\)

\(\Rightarrow a^{202}+b^{202}+a^{100}b^{102}+a^{102}b^{100}=a^{202}+b^{202}+2a^{101}b^{101}\)

\(\Rightarrow a^{100}b^{100}\left(a^2+b^2\right)=a^{100}b^{100}\left(2ab\right)\)

\(\Rightarrow a^2+b^2=2ab\)

\(\Rightarrow\left(a-b\right)^2=0\)

\(\Rightarrow a=b\)

Thế vào \(a^{100}+b^{100}=a^{101}+b^{101}\)

\(\Rightarrow a^{100}+a^{100}=a^{101}+a^{101}\)

\(\Rightarrow2a^{100}\left(a-1\right)=0\)

\(\Rightarrow a=1\Rightarrow b=1\)

\(\Rightarrow...\)

18 tháng 8 2021

em cảm ơn thầy ạ

7 tháng 4 2018

ko hiểu

8 tháng 4 2018

đấy là số mũ đó bn

28 tháng 9 2015

dễ mà!  mọi người cứ làm quá lên

15 tháng 11 2016

không trả lời được mà dễ

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{100}-100}{1}=\frac{a_1+a_2+...+a_{100}-5050}{5050}=\frac{10100-5050}{5050}=\frac{5050}{5050}=1\)

\(\Rightarrow a_1-1=100\)

\(a_2-2=99\)

...

\(a_{100}-100=1\)

\(\Rightarrow a_1=a_2=...=a_{100}=101\)

10 tháng 8 2018

Giả sử trong 100 số nguyên dương đã cho không tồn tại 2 số nào bằng nhau

Không mất tính tổng quát, giả sử \(a_1< a_2< a_3< ...< a_{100}\)

\(\Rightarrow a_1\ge1;a_2\ge2;a_3\ge3;....;a_{100}\ge100\Rightarrow\frac{1}{a_1^2}+\frac{1}{a_2^2}+\frac{1}{a^2_3}...+\frac{1}{a^2_{100}}\le\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\left(1\right)\)

Lại có: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=\frac{199}{100}\left(2\right)\)

Từ (1) và (2) => \(\frac{1}{a_1^2}+\frac{1}{a^2_2}+...+\frac{1}{a^2_{100}}< \frac{199}{100}\) trái với giả thiết

Vậy tồn tại ít nhất 2 số bằng nhau trong 100 số a1,a2,...,a100

4 tháng 10 2019

Em tham khảo link này nhé! Câu hỏi của Ngọc - Toán lớp 7 - Học toán với OnlineMath

22 tháng 6 2019

Câu hỏi của Ngọc Ánh - Toán lớp 10 | Học trực tuyến

Bạn tham khảo link tại đây nhé

24 tháng 7 2015

http://olm.vn/hoi-dap/question/133393.html

bạn xem ở đây nhé

12 tháng 3 2017

Không biết làm?