K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 2

\(A=1+4+4^2+...+4^{100}\)

\(\Rightarrow4A=4+4^2+4^3+...+4^{100}+4^{101}\)

\(\Rightarrow4A-A=4^{101}-1\)

\(\Rightarrow3A=4^{101}-1\)

\(\Rightarrow A=\dfrac{4^{101}-1}{3}\)

\(\Rightarrow A< B\)

16 tháng 2

cộng nha mấy bạn

 

19 tháng 1 2016

.>

>            tic nhe cac ban

20 tháng 7 2016

Đặt C = 4+42+43+…+499

A = 1 + C(*)

\(C=4^{100}-1\)

Thay C vào (*)

\(A=4^{100}-1+1=4^{100}\)

Vậy A=B

20 tháng 7 2016

A = 1 + 4 + 42 + 43 + ... + 499 

4A = 4 + 42 + 43 + 44 + ... + 4100

4A - A = (4 + 42 + 43 + 44 + ... + 4100) - (1 + 4 + 42 + 43 + ... + 499)

3A = 4100 - 1 < 4100 = B

=> 3A < B

=> A < B

16 tháng 8 2018

\(A=4+2^2+2^3+...+2^{99}\)

=>  \(2A=8+2^3+2^4+...+2^{100}\)

=>  \(2A-A=\left(8+2^3+2^4+...+2^{100}\right)-\left(4+2^2+2^3+...+2^{99}\right)\)

=>  \(A=2^{100}< 2^{200}=2^{2.100}=4^{100}=B\)

Vậy  A < B

8 tháng 7 2016

Ta có:

\(\frac{1}{2}< \frac{2}{3}\)

\(\frac{3}{4}< \frac{4}{5}\)

\(\frac{5}{6}< \frac{6}{7}\)

\(...\)

\(\frac{99}{100}< \frac{100}{101}\)

\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)

\(\Rightarrow M< N\)