Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\ge\frac{\left(1+1\right)^2}{2a+b+a+2b}=\frac{4}{3\left(a+b\right)}=\frac{4}{3.16}=\frac{1}{12}\) ( Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=8\)
\(\dfrac{1}{2a+b}+\dfrac{1}{a+2b}\ge\dfrac{4}{2a+b+a+2b}=\dfrac{4}{3\left(a+b\right)}=\dfrac{4}{3.16}=\dfrac{1}{12}\)
\(\Rightarrow A_{min}=\dfrac{1}{12}\)
Dấu "=" xảy ra khi \(2a+b=a+2b\Rightarrow a=b=8\)
Ta có:(Sử dụng bdt cô-si) \(\frac{bc}{a^2b+a^2c}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}.\frac{b+c}{4bc}}=2.\frac{1}{2a}=\frac{1}{a}\)
=> \(\frac{bc}{a^2b+a^2c}\ge\frac{1}{a}-\frac{b+c}{4bc}\)
Chứng minh tương tự:\(\frac{ca}{b^2a+b^2c}\ge\frac{1}{b}-\frac{c+a}{4ca}\);\(\frac{ab}{c^2a+c^2b}\ge\frac{1}{c}-\frac{a+b}{4ab}\)
Từ đó \(P\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\left(\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}\right)\)
Mà\(\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}=\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)=> \(P\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge9\)(do a+b+c<=1)=> \(P\ge\frac{1}{2}.9=\frac{9}{2}\)
Dấu '=' xảy ra <=> \(\hept{\begin{cases}a+b+c=1\\\frac{bc}{a^2b+a^2c}=\frac{b+c}{4bc}\\a,b,c>0\end{cases}};...\)
<=> \(a=b=c=\frac{1}{3}\)
Vậy\(MinP=\frac{9}{2}\)khi a=b=c=1/3
Lời giải:
Áp dụng BĐT AM-GM:
\(A=\sum \frac{2a}{b^2+2}=\sum (a-\frac{ab^2}{b^2+2})=\sum a-\sum \frac{ab^2}{b^2+2}\)
\(=6-\sum \frac{ab^2}{b^2+2}=6-\sum \frac{ab^2}{\frac{b^2}{2}+\frac{b^2}{2}+2}\)
\(\geq 6-\sum \frac{ab^2}{3\sqrt[3]{\frac{b^4}{2}}}=6-\frac{1}{3}\sum \sqrt[3]{2a^3b^2}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sum \sqrt[3]{2a^3b^2}\leq \sum \frac{2a+ab+ab}{3}=\frac{12+2(ab+bc+ac)}{3}=4+\frac{2}{3}(ab+bc+ac)\)
\(\leq 4+\frac{2}{3}.\frac{(a+b+c)^2}{3}=12\)
Do đó: $A\geq 6-\frac{1}{3}.12=2$
Vậy $A_{\min}=2$ khi $a=b=c=2$
Ta có:
\(A=\dfrac{1}{2a+b}+\dfrac{1}{a+2b}\)
\(=\dfrac{1}{2a+16-a}+\dfrac{1}{16-b+2b}\)
\(=\dfrac{1}{a+16}+\dfrac{1}{b+16}\)
\(=\dfrac{a+b+32}{ab+16\left(a+b\right)+256}\)
\(=\dfrac{16+32}{ab+256+256}\)
\(=\dfrac{48}{ab+512}\)
\(\ge\dfrac{48}{\dfrac{\left(a+b\right)^2}{4}+512}\) (Cô - si)
\(=\dfrac{48}{\dfrac{256}{4}+512}\)
\(=\dfrac{1}{12}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=8\)
Vậy Min A = \(\dfrac{1}{12}\) \(\Leftrightarrow a=b=8\)