Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này có nhiều cách chứng minh
1) ta có (a - b)^2 ≥ 0 ,<=> a^2 + b^2 ≥ 2ab <=> a^2 + b^2 + 2ab ≥ 4ab
<=> (a + b)^2 ≥4ab , vì a , b > 0 nên a + b > 0
=> a + b/ab ≥ 4/ a + b <=> 1/a + 1/b ≥ 4/a + b (đpcm)
2) áp dụng BĐT Cô si cho hai số dương a và b , ta có
a + b ≥ 2 √ab và 1/a + 1/b ≥ 1/ √ab
=> (a + b)(1/a + 1/b) ≥ 4 => 1/a + 1/b ≥ 4/a + b
dấu "=" xảy ra <=> a = b
lời giải dễ hiểu nhất như thế này này (a+b)(1/a+1/b)=1+a/b+b/a+1=2+a/b+b/a mà ta có a/b+b/a luôn luôn lớn hơn hoặc bằng 2 vầy suy ra ĐPCM(để chứng minh a/b+b/c lớn hơn hoặc bằng 2 lấy a/b+b/a-2=a^2+b^2-2ab/ab=(a-b)^2/ab luôn lớn hơn hoặc bằng o vậy a/b+b/c luôn lớn hơn hoặc bằn 2)
Câu hỏi của Nguyễn Đa Vít - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo tại link trên!
1 ) Ta có :
\(a+b-c=0\Leftrightarrow a+b=c\Leftrightarrow\left(a+b\right)^3=c^3\)
\(\Rightarrow a^3+b^3-c^3=a^3+b^3-\left(a+b\right)^3\)
\(\Rightarrow a^3+b^3-c^3=a^3+b^3-3a^2b-3b^2a-b^3\)
\(\Rightarrow a^3+b^3-c^3=-3a^2b-3b^2a\)
\(\Rightarrow a^3+b^3-c^3=-3ab\left(a+b\right)\)
\(\Rightarrow a^3+b^3-c^3=-3abc\left(đpcm\right)\)
2 ) Ta có :
\(a-b+c=0\Leftrightarrow c=b-a\Leftrightarrow c^3=\left(b-a\right)^3\)
\(\Rightarrow a^3-b^3+c^3=a^3-b^3+\left(b-a\right)^3\)
\(\Rightarrow a^3-b^3+c^3=a^3-b^3+b^3-3a^2b+3b^2a-a^3\)
\(\Rightarrow a^3-b^3+c^3=-3a^2b+3b^2a\)
\(\Rightarrow a^3-b^3+c^3=-3ab\left(a-b\right)\)
\(\Rightarrow a^3-b^3+c^3=3ab\left(b-a\right)\)
\(\Rightarrow a^3-b^3+c^3=3abc\left(đpcm\right)\)
1 ) Bổ sung dấu \(\Rightarrow\) thứ 2 :
\(\Rightarrow...=a^3+b^3-a^3-3a^2b-3b^2a-b^3\)
a)4x(x+1)+(3-2x)=15
4x2 + 4x + 3 - 2x = 15
4x2 + 2x -12 = 0
4x2 + 8x - 6x - 12 = 0
4x(x+2) - 6(x+2) = 0
(x+2)(4x - 6)= 0 => TH1: x = -2 . TH2: x = 3/2
b)9x(x-2014)-x+2014=0
9x(x-2014)-(x-2014) = 0
(x-2014) (9x -1) = 0 => TH1: x = 2014. TH2: x=1/9
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Ta có:\(\left(a^2+b^2\right)\left(c^2+a^2\right)=\left(ac+ab\right)^2+\left(a^2-bc\right)^2\)(tự c/m nha bạn tính cái đằng sau rồi phân tích sẽ được cái đằng trước)
mà \(\left(a^2-bc\right)^2\ge0\Rightarrow\left(a^2+b^2\right)\left(a^2+c^2\right)\ge\left(ac+ab\right)^2=a^2\left(b+c\right)^2\)
\(\Rightarrow\left(đpcm\right)\)
Giải :
a3 + b3 + a2c + b2c - abc
= ( a3 + b3 ) + ( a2c + b2c - abc )
= ( a + b ) ( a2 - ab + b2 ) + c ( a2 - ab + b2 )
= ( a2 - ab + b2 ) ( a + b + c )
Vì a + b + c = 0 , nên ( a + b + c ) ( a2 - ab + b2 ) = 0
Do đó a3 + b3+ a2c + b2c - abc = 0
Áp dụng bất đẳng thức Cauchy cho cặp số \(\left(\frac{a}{b}+\frac{b}{a}\right)\) không âm (do \(a,b>0\)), ta có:
\(\frac{a}{b}+\frac{b}{c}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\) (điều phải chứng minh)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\frac{a}{b}=\frac{b}{a}\) \(\Leftrightarrow\) \(a=b\)
toàn bài dễ cũng k giải đc lấy a/b+b/a -2 =a^2+b^2-2ab/ab=(a-b)^2/ab luôn lớn hơn hoặc bằng 0 vậy suy ra ĐPCM