K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

Ta có: \(a^2-\frac{1}{a^2}=a+\frac{1}{a}\)\(\Leftrightarrow\left(a-\frac{1}{a}\right)\left(a+\frac{1}{a}\right)=a+\frac{1}{a}\)\(\Leftrightarrow a-\frac{1}{a}=\frac{\left(a+\frac{1}{a}\right)}{\left(a+\frac{1}{a}\right)}=1\)

\(a^2+\frac{1}{a^2}=\left(a-\frac{1}{a}\right)^2+2.a.\frac{1}{a}=1^2+2=3\)

8 tháng 7 2015

Đặt \(a-b=x;b-c=y;c-a=z\Rightarrow x+y+z=0\)

Ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\frac{\left(x+y+z\right)}{xyz}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(A=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\) là số hữu tỉ

8 tháng 7 2015

\(A=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\) thì phải?

7 tháng 4 2019

\(\left(a+b+c\right)-\left(\frac{a}{b^2+1}+\frac{c}{a^2+1}+\frac{b}{c^2+1}\right)\le\frac{3}{2}\)

\(a-\frac{a}{b^2+1}=\frac{ab^2+a-a}{b^2+1}=\frac{ab^2}{b^2+1}\)

\(b^2+1\ge2b\Rightarrow\frac{ab^2}{b^2+1}\le\frac{ab^2}{2b}=\frac{ab}{2}\)

Tương tự như vậy , ta có\(a-\frac{a}{b^2+1}+b-\frac{b}{c^2+1}+c-\frac{c}{a^2+1}\le\frac{ab+bc+ac}{2}\)

Dễ c/m được \(ab+cb+ac\le3\Rightarrow a-\frac{a}{b^2+1}+b-\frac{b}{c^2+1}+c-\frac{c}{a^2+1}\le\frac{3}{2}\)

Vậy BĐT cần c/m luôn đúng với a+b+c=3 và a,b,c>0

31 tháng 7 2017

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{1+b^2}=a-\frac{a^2b}{b^2+1}\ge a-\frac{a^2b}{2b}=a-\frac{ab}{2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{b}{c^2+1}\ge b-\frac{bc}{2};\frac{c}{a^2+1}\ge c-\frac{ca}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge a+b+c-\frac{ab+bc+ca}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)

Xảy ra khi \(a=b=c=1\)

31 tháng 7 2017

tc \(x^2+y^2\ge2xy\left(cauchy\right)\)

\(\frac{a}{1+b^2}=\frac{a+ab^2-ab^2}{1+b^2}=\frac{a\left(1+b^2\right)-ab}{1+b^2}=a-\frac{ab}{1+b^2}\ge a-\frac{ab}{2ab}\ge a-\frac{1}{2}\)(1)

tương tự \(\frac{b}{1+c^2}\ge b-\frac{1}{2}\)(2)

\(\frac{c}{1+a^2}\ge c-\frac{1}{2}\)(3)

từ (1)(2)(3)=> \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{3}{2}=3-\frac{3}{2}=\frac{3}{2}\left(a+b+c=3\right)\)

=> đpcm

b, Ta có \(2015^2=\left(2014+1\right)^2=2014^2+2.2014+1\) 

=> \(2014^2+1=2015^2-2.2014\) 

=> \(B=\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\) 

\(\sqrt{2015^2-2.2014+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\) 

\(\sqrt{\left(2015-\frac{2014}{2015}\right)^2}+\frac{2014}{2015}\) = \(2015-\frac{2014}{2015}+\frac{2014}{2015}=2015\) 

=> đpcm

2 tháng 7 2016

Bài 1:

Đặt \(a^2=x;b^2=y;c^2=z\)

Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)

Áp dụng BĐT cô si ta có:

\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)

\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)

Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)

Cộng lại ta được:

\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)

Sau đó bình phương hai vế rồi

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng

Vậy...

Bài 2:

Trước hết ta chứng minh bất đẳng thức sau:

\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)

Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau: 

\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)

\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)

\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)

Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)

Từ đó ta có:

\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)

Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có 

\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)

Dấu = xảy ra khi a=b=c 

c bạn tự làm nhé mình mệt rồi :D

2 tháng 7 2016

- Ôi má ơi, má patient dử dậy :)

28 tháng 11 2019

Bài này đăng nhiều trên OLM rồi, lời giải vắn tắt:

\(VT=\Sigma_{cyc}\frac{a}{1+b^2}=\Sigma_{cyc}\left(a-\frac{ab^2}{1+b^2}\right)=3-\Sigma_{cyc}\frac{ab^2}{1+b^2}\)

\(\ge3-\Sigma_{cyc}\frac{ab}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

28 tháng 11 2019

Ta có: \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)(bđt cô - si)

Tương tự ta có: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\);\(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Cộng từng vế của các bđt trên:

\(\frac{a}{1+b^2}\)\(+\frac{b}{1+c^2}\)\(+\frac{c}{1+a^2}\)\(\ge a+b+c-\frac{ab+bc+ca}{2}\)

Dễ c/m:  \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow3^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca\le3\)

\(BĐT\ge3-\frac{3}{2}=\frac{3}{2}\)

hay \(\frac{a}{1+b^2}\)\(+\frac{b}{1+c^2}\)\(+\frac{c}{1+a^2}\)\(\ge\frac{3}{2}\)

(Dấu "="\(\Leftrightarrow a=b=1\))

18 tháng 7 2016

18. Ta có : \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)

\(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2xyz\left(\frac{1}{abz}+\frac{1}{xbc}+\frac{1}{acy}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2xyz\left(\frac{ayz+bxz+cxy}{abcxyz}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)

18 tháng 7 2016

19. Nhân cả hai vế của đẳng thức giả thiết với \(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\)được 

\(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}=0\)

Ta có ;

 \(\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}=\frac{\left(a+b\right)\left(a-b\right)+\left(b+c\right)\left(b-c\right)+\left(c+a\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)

24 tháng 8 2019

Xét \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{a+b+c}{abc}\right)}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)

\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)(đpcm)