Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có \(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left ( \frac{1}{a}-\frac{1}{b}-\frac{1}{c} \right )^2+\frac{2}{ab}+\frac{2}{ac}-\frac{2}{bc}\)
\(\Leftrightarrow P=6^2+\frac{2(b+c-a)}{abc}=6^2+\frac{2(-abc)}{abc}=34\)
Thanks bạn nhiều.
Mk nhờ bạn giải hộ mk bài mk cũng vừa mới đăng nha.
a)
Tam giác DAB có IO // AB nên
\(\frac{IO}{AB}=\frac{DI}{DA}\) (hệ quả của định lý Talet)
Tam giác ACD có OI // CD nên
\(\frac{OI}{CD}=\frac{AI}{AD}\) (hệ quả của định lý Talet)
Ta có: \(\frac{IO}{AB}+\frac{OI}{CD}=\frac{DI}{DA}+\frac{AI}{AD}=\frac{DI+AI}{DA}=\frac{DA}{DA}=1\)
=> \(OI\left(\frac{1}{AB}+\frac{1}{CD}\right)=1\)
=> \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OI}\)
b)
Tam giác CAB có OK // AB nên
\(\frac{OK}{AB}=\frac{CK}{CB}\) (hệ quả của định lý Talet)
mà \(\frac{CK}{CB}=\frac{DI}{DA}\)
=> \(\frac{OK}{AB}=\frac{DI}{DA}\)
mà \(\frac{DI}{DA}=\frac{OI}{AB}\) (chứng minh trên)
=> \(\frac{OK}{AB}=\frac{OI}{AB}\)
=> OK = OI
mà \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OI}\)
=> \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OK}\)
c)
O là trung điểm của IK (OK = OI)
=> IK = 2OK
Ta có: \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OK}\)
=> \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{2OK}\)
=> \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{IK}\)
Bài 1:
Ta có: \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=-\left(a^2+b^2+c^2\right)\)
Ta thấy \(\left\{{}\begin{matrix}a^2\ge0\\b^2\ge0\\c^2\ge0\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge0\Rightarrow-\left(a^2+b^2+c^2\right)\le0\)
\(\Rightarrow2\left(ab+bc+ca\right)\le0\)
\(\Leftrightarrow ab+bc+ca\le0\left(đpcm\right)\)
Vậy...
Với \(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ac+bc+ac\right)\)
Vì \(a^2\ge0;b^2\ge0;c^2\ge0\)(với mọi a,b,c\(\in\)R)
\(\Rightarrow\)\(a^2+b^2+c^2\ge0\) (đẳng thức xảy ra khi a=b=c=0)
\(\Rightarrow-2\left(ab+bc+ac\right)\ge0\)
\(\Rightarrow ab+bc+ac\le0\)(đpcm)
Bài 2:
a: \(M=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2+2\left(x-5\right)\left(x+5\right)+50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2+50-5x+2x^2-50}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\dfrac{x-1}{2}\)
b: Khi x=3 thì \(M=\dfrac{3-1}{2}=\dfrac{2}{2}=1\)
Khi x=5 thì \(M=\dfrac{5-1}{2}=\dfrac{4}{2}=2\)
4a) \(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+b^2+2ab\)
=> (a+b)^2=(a-b)^2+4ab
- 2x – x2 + 2 – x – (3x2 + 6x + 5x +10) = – 4x2 + 2
- 2x – x2 + 2 – x – 3x2 – 6x – 5x – 10 = – 4x2 + 2 –10x = 10 x = – 1
- 2x2 – 6x + x – 3 = 0
(x – 3)(2x + 1) = 0
x = 3 hay x = -1/2
\(b.x^4+4x^2-5=x^4-x^2+5x^2-5\)
\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)
\(c.x^3-19x-30=x^3-25x+6x-30\)
\(=x\left(x-5\right)\left(x+5\right)+6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)
\(5\left(x+3\right)-2x\left(x+3\right)=0\)
<=> \(\left(5-2x\right)\left(x+3\right)=0\)
<=> \(\hept{\begin{cases}5-2x=0\\x+3=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
\(4x\left(x-2018\right)-x+2018=0\)
<=> \(4x\left(x-2018\right)-\left(x-2018\right)=0\)
<=> \(\left(4x-1\right)\left(x-2018\right)=0\)
<=> \(\hept{\begin{cases}4x-1=0\\x-2018=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{4}\\x=2018\end{cases}}\)
\(\left(x+1\right)^2-\left(x+1\right)=0\)
<=> \(\left(x+1\right)\left(x+1-1\right)=0\)
<=> \(\left(x+1\right).x=0\)
<=> \(\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=0\\x=-1\end{cases}}\)
học tốt
a) \(5\left(x+3\right)-2x\left(3+x\right)=0\)
\(5\left(x+3\right)+2x\left(x+3\right)=0\)
\(\left(x+3\right)\left(5+2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\5+2x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{-5}{2}\end{cases}}\)
b) \(4x\left(x-2018\right)-x+2018=0\)
\(4x\left(x-2018\right)-\left(x-2018\right)=0\)
\(\left(x-2018\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2018=0\\4x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2018\\x=\frac{1}{4}\end{cases}}\)
c) \(\left(x+1\right)^2-\left(x+1\right)=0\)
\(\left(x+1\right)\left(x+1-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+1-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)