K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

a)

Tam giác DAB có IO // AB nên

\(\frac{IO}{AB}=\frac{DI}{DA}\) (hệ quả của định lý Talet)

Tam giác ACD có OI // CD nên

\(\frac{OI}{CD}=\frac{AI}{AD}\) (hệ quả của định lý Talet)

Ta có: \(\frac{IO}{AB}+\frac{OI}{CD}=\frac{DI}{DA}+\frac{AI}{AD}=\frac{DI+AI}{DA}=\frac{DA}{DA}=1\)

=> \(OI\left(\frac{1}{AB}+\frac{1}{CD}\right)=1\)

=> \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OI}\)

b)

Tam giác CAB có OK // AB nên

\(\frac{OK}{AB}=\frac{CK}{CB}\) (hệ quả của định lý Talet)

\(\frac{CK}{CB}=\frac{DI}{DA}\)

=> \(\frac{OK}{AB}=\frac{DI}{DA}\)

\(\frac{DI}{DA}=\frac{OI}{AB}\) (chứng minh trên)

=> \(\frac{OK}{AB}=\frac{OI}{AB}\)

=> OK = OI

\(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OI}\)

=> \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OK}\)

c)

O là trung điểm của IK (OK = OI)

=> IK = 2OK

Ta có: \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OK}\)

=> \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{2OK}\)

=> \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{IK}\)

24 tháng 2 2017

Phương Linh P/s: Bạn có thể áp dụng định lý đã được chứng minh ở bài 19 SGK Toán 8 tập 2 trang 68.

29 tháng 2 2020

A B C D I K O

\(1,\hept{\begin{cases}OI//AB\Rightarrow\frac{OI}{AB}=\frac{OD}{BD}\\OI//CD\Rightarrow\frac{OI}{CD}=\frac{OA}{AC}\\AB//CD\Rightarrow\frac{OA}{AC}=\frac{OB}{BD}\end{cases}}\Rightarrow\frac{OI}{AB}+\frac{OI}{CD}=\frac{OD}{BD}+\frac{OA}{AC}=\frac{OD}{BD}+\frac{OB}{BD}=\frac{BD}{BD}=1\)

\(\hept{\begin{cases}OK//AB\Rightarrow\frac{OC}{AC}=\frac{OK}{AB}\\OK//CD\Rightarrow\frac{OK}{CD}=\frac{OB}{BD}\\\frac{CB}{BD}=\frac{OA}{AC}\end{cases}}\Rightarrow\frac{OK}{AB}+\frac{OK}{CD}=\frac{OC}{AC}+\frac{OB}{BD}=\frac{OC}{AC}+\frac{OA}{AC}=\frac{AC}{AC}=1\)

\(2,\hept{\begin{cases}\frac{OI}{AB}+\frac{OI}{CD}=1\\\frac{OK}{AB}+\frac{OK}{CD}=1\end{cases}}\Rightarrow\frac{OI}{AB}+\frac{OI}{CD}+\frac{OK}{AB}+\frac{OK}{CD}=2\)

\(\Leftrightarrow\frac{OI+OK}{AB}+\frac{OI+OK}{CD}=2\)

\(\Leftrightarrow\frac{IK}{AB}+\frac{IK}{CD}=2\)

\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{IK}\left(đpcm\right)\)

29 tháng 2 2020

Giúp mik bài này với: https://olm.vn/hoi-dap/detail/244594379058.html

7 tháng 8 2016

a) Xét ΔOIC và ΔABC có:

   \(\widehat{ACB}\) : góc chung

   \(\widehat{OIC}=\widehat{ABC}\) (đồng vị do JI//AB(gt))

 => ΔOIC~ΔABC(g.g)

=>\(\frac{OI}{AB}=\frac{CI}{BC}\)

=> BC.OI=AB.CI

b) Theo định lý đảo của định lý ta-let vào ΔBDC :

=>  \(\frac{OI}{DC}=\frac{BI}{BC}\)

3 tháng 4 2017

BẠN DÙNG ĐỊNH LÝ TA-LÉT ĐỂ C/M OM=ON

Vì OM // AB & OM // CD nên 

\(\frac{OM}{AB}=\frac{DM}{AD}\&\frac{OM}{CD}=\frac{AM}{AD}\)

\(\Rightarrow\frac{OM}{AB}+\frac{OM}{CD}=\frac{DM}{AD}+\frac{AM}{AD}\)

\(\Leftrightarrow OM\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{DM+AM}{AD}\)

\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OM}\)(1)

TƯƠNG TỰ \(\frac{1}{AB}+\frac{1}{CB}=\frac{1}{ON}\)(2)

CỘNG VẾ VỚI VẾ CỦA (1) VÀ (2) TA CÓ:

\(2\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{1}{OM}+\frac{1}{ON}\)MÀ OM=ON(C/M TRÊN) NÊN MN=2.OM

\(\Rightarrow2\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{1}{OM}+\frac{1}{OM}=\frac{2}{OM}\)

\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{2.OM}=\frac{2}{MN}\left(ĐPCM\right)\)

31 tháng 3 2017

Mình mới học lớp 5 thôi nên chỉ vẽ hình thôi à! Thông cảm nha!

Hình như sau:

Thấy đúng thì !

2 tháng 8 2018

A B C D O J I

Vì OJ // AB, theo định lý Ta-lét ta có:

\(\dfrac{OB}{DB}=\dfrac{JA}{DA}\) (1)

Vì OJ // AB, theo hệ quả của định lý Ta-lét ta có:

\(\dfrac{OD}{DB}=\dfrac{OJ}{AB}\) (2)

Mà OJ // CD, theo hệ quả của định lý Ta-lét ta có:

\(\dfrac{OA}{AC}=\dfrac{JA}{DA}\) (3)

Vì OI // AB, theo định lý Ta-lét ta có:

\(\dfrac{OA}{AC}=\dfrac{OJ}{CD}\) (4)

Vì OI // CD, theo hệ quả của định lý Ta-lét ta có:

\(\dfrac{OB}{DB}=\dfrac{OI}{CD}\) (5)

Từ (1), (3) \(\Rightarrow\dfrac{OB}{DB}=\dfrac{OA}{AC}\) (6)

Từ (4), (5), (6) \(\Rightarrow\dfrac{OJ}{CD}=\dfrac{OI}{CD}\)

\(\Rightarrow OJ=OI\) (7)

Ta có biểu thức : \(\dfrac{1}{AB}+\dfrac{1}{CD}\)(8)

Từ (2), (7) \(\Leftrightarrow AB=\dfrac{DB.OI}{OD}\) (9)

(5) \(CD=\dfrac{DB.OI}{OB}\) (10)

Thay (9), (10) vào biểu thức (8) ta có:

1:\(\dfrac{DB.OI}{OD}+1:\dfrac{DB.OI}{OB}\)

= \(1.\dfrac{OD}{DB.OI}+1.\dfrac{OB}{DB.OI}\)

= \(\dfrac{OD}{DB.OI}+\dfrac{OB}{DB.OI}\)

=\(\dfrac{OD+OB}{DB.OI}\)

=\(\dfrac{DB}{DB.OI}=\dfrac{1}{OI}\)

\(\Rightarrow\dfrac{1}{OI}=\dfrac{1}{AB}+\dfrac{1}{CD}\) (11)

b) Từ (7) \(\Rightarrow\) OJ = OI = \(\dfrac{1}{2}IJ\)

\(\Leftrightarrow IJ=2OI\)

\(\Leftrightarrow\dfrac{1}{OI}=\dfrac{2}{IJ}\) (12)

Từ (11), (12) \(\Rightarrow\dfrac{2}{IJ}=\dfrac{1}{AB}+\dfrac{1}{CD}\)

28 tháng 1

cho mình hỏi bạn vừa trl với cái biểu thức 8 cậu lấy đâu ra

Em tham khảo nha.

Coi AB = 1, DC = k thì \(\frac{DO}{OB}=\frac{DC}{AB}=k\Rightarrow\frac{DO}{DB}=\frac{k}{k+1}\)

\(\Rightarrow OE=OF=\frac{k}{k+1}\Rightarrow EF=\frac{2k}{k+1}\)

Ta có \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{1}+\frac{1}{k}=\frac{k+1}{k}\)

\(\frac{2}{EF}=\frac{2}{\frac{2k}{k+1}}=\frac{k+1}{k}\)

Vậy nên \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)