K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2015

À , mk giải tiếp nké : UCLN ( 27;35 ) = 1

suy ra A & B là 2 số nguyên tố cùng nhau .

10 tháng 3 2017

2 nguyên tố đấy bạn

 Giải

Giả sử d là ước nguyên tố của ab và a+b.

=> ab chia hết cho d và a+b chia hết cho d.

Vì ab chia hết cho d => a chia hết cho d và b chia hết cho d (Vì d là số nguyên tố)

Do vai trò của a và b bình đẳng nên:

Giả sử: a chia hết cho d => b chia hết cho d (vì a+b chia hết cho d)

=> d thuộc ƯC(a;b). Mà ƯCLN(a,b)=1

=> d=1(trái với d là số nguyên tố)

Do đó ab và a+b không thể có ước nguyên tố chung.

=> ƯCLN(ab,a+b)=1

Vậy ƯCLN(ab,a+b)=1

24 tháng 9 2021

Giả sử \(d\) là ước nguyên tố của \(ab\)\(a+b\).

\(\Rightarrow\) \(ab⋮d\)\(a+b⋮d\)

\(ab⋮d\) \(\Rightarrow\) \(a⋮d;b⋮d\) (Vì \(d\) là số nguyên tố)

Do vai trò của \(a\)\(b\) bình đẳng nên:

Giả sử: \(a⋮d\) \(\Rightarrow\) \(b⋮d\) (Vì \(a+b⋮d\))

\(\Rightarrow\) \(d\inƯC\left(a;b\right)\). Mà \(ƯCLN\left(a,b\right)=1\)

\(\Rightarrow\) \(d=1\)(trái với \(d\) là số nguyên tố)

Do đó \(ab\)\(a+b\) không thể có ước nguyên tố chung.

\(\Rightarrow\) \(ƯCLN\left(ab,a+b\right)=1\)

Vậy \(ƯCLN\left(ab,a+b\right)=1\)

25 tháng 1 2021

Giả sử \(x\) là ước nguyên tố của \(a.b\)và \(a+b\)\(\left(x\inℕ^∗\right)\)

\(\Rightarrow a.b⋮x\)và \(a+b⋮x\)

Vì \(a.b⋮x\Rightarrow a⋮x\)hoặc \(b⋮x\)

Vì \(a+b⋮x\Rightarrow a⋮x\)và \(b⋮x\Rightarrow x\inƯC\left(a,b\right)\)

Mà nếu \(a\)và \(b\)nguyên tố cùng nhau ( hay \(\left(a,b\right)=1\)) thì \(ƯCLN\left(a,b\right)=1\)

\(\Rightarrow x=1\)không phải là số nguyên tố trái với giả thiết đặt ra

Do đó không tồn tại ước nguyên tố \(x\)của \(a.b\)và \(a+b\)\(\left(x\inℕ^∗\right)\)

Do đó \(a.b\)và \(a+b\)nguyên tố cùng nhau

\(\left(a.b,a+b\right)=1\)( đpcm )

/ Sai thì bỏ qua nha Hiro /