K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2016

nếu giả sử câu b cũng tương tự như câu a thi ta co cach nhu sau

4 mũ n-1 chia hết cho 3 thì suy ra     n=2

22 tháng 10 2015

câu 2: ta có 8p(8p+1)(8p+2) chia hết cho 3

=>16p(8p+1)(4p+1) chia het cho 3

mà 16 không chia hết cho 3,p và 8p+1 là snt >3 nên không chia hết cho 3
=>4p+1 chia hết cho 3

12 tháng 6 2015

a)2x+y=7(2x+y)=14x+7y

Do 2x+9 chia hết cho 9 =>14x+7y chia hết cho 9

9x chia hết cho 9 =>14x+7y-9x=5x+7y chia hết cho 9

b)p và p+2 là số nguyên tố lớn hơn 3 nên p+p+2=2p+2 chia hết cho 2

p là số nguyên tố lớn hơn 3 nên

*)P=3k(loại vì 3k là hợp số  có ước là 3 và k)

*)p=3k+1(loại vì số nguyên tố lớn hơn 3 là số lẻ =>3k+1 là số chẵn)

*)p=3k+2(TM)

=>2p+2=6k+4+2=6k+6 chia hết cho 3

2p+2 chia hết cho 2 và 3=>2p+2 chia hết cho 6

=>(2p+2).1/2=p+1 chia hết cho 6

22 tháng 2 2018

^.^

^-^

^_^

21 tháng 10 2015

1)

Ta có: a+a+2=2a+2=2.(a+1)

Vì a là số nguyên tố lớn hơn 3

=>a là số lẻ

=>a+1 là số chẵn

=>a+1 chia hết cho 2

=>2.(a+1) chia hết cho 4

=>a+a+2 chia hết cho 4(1)

Lại có:

Vì a là số nguyên tố lớn hơn 3

=>a có 2 dạng 3k+1 và 3k+2

*Xét a=3k+1=>a+2=3k+1+2=3k+3=3.(k+1) là hợp số

=>Vô lí

*Xét a=3k+2=>a+2=3k+2+2=3k+4=3.(k+1)+1 là số nguyên tố

Khi đó: a+a+2=2a+2=2.(3k+2)+2=2.3k+4+2=3.2k+6=3.(2k+3) chia hết cho 3

=>a+a+2 chia hết cho 3(2)

Từ (1) và (2) ta thấy:

a+a+2 chia hết cho 4 và 3

mà (4,3)=1

=>a+a+2 chia hết cho 4.3

=>a+a+2 chia hết cho 12

Vậy tổng của n và n+2 chia hết cho 12

DD
28 tháng 9 2021

a) \(p\)là số nguyên tố lớn hơn \(3\)nên \(p\)là số lẻ. 

\(p=2k+1\)suy ra \(\left(p-1\right)\left(p+1\right)=2k\left(2k+2\right)=4k\left(k+1\right)⋮8\)

(vì \(k\left(k+1\right)\)là tích của hai số tự nhiên liên tiếp nên chia hết cho \(2\))

\(p\)là số nguyên tố lớn hơn \(3\)nên \(p=3k\pm1\).

Khi đó \(\left(p-1\right)\left(p+1\right)\)sẽ chia hết cho \(3\).

Mà \(\left(8,3\right)=1\)nên \(\left(p-1\right)\left(p+1\right)\)chia hết cho \(8.3=24\).

b) Đặt \(\left(2n+1,3n+1\right)=d\).

Suy ra 

\(\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}}\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm.