Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x\ne0;x\ne6;x\ne-6\)
b) \(A=\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)
\(A=\left[\dfrac{x}{\left(x+6\right)\left(x-6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right]:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}+\dfrac{x}{6-x}\)
\(A=\left[\dfrac{x^2}{x\left(x+6\right)\left(x-6\right)}-\dfrac{\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right]:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}+\dfrac{x}{6-x}\)
\(A=\dfrac{x^2-x^2+12x-36}{x\left(x+6\right)\left(x-6\right)}:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}+\dfrac{x}{6-x}\)
\(A=\dfrac{12x-36}{x\left(x+6\right)\left(x-6\right)}:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}+\dfrac{x}{6-x}\)
\(A=\dfrac{12\left(x-3\right)}{x\left(x+6\right)\left(x-6\right)}:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}-\dfrac{x}{x-6}\)
\(A=\dfrac{12\left(x-3\right)}{x\left(x+6\right)\left(x-6\right)}\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)
\(A=\dfrac{6}{x-6}-\dfrac{x}{x-6}\)
\(A=\dfrac{6-x}{x-6}\)
\(A=-\dfrac{x-6}{x-6}\)
\(A=-1\)
Vậy giá trị của A không phụ thuộc vào giá trị của biến
a: ĐKXĐ: x<>2; x<>-2; x<>0; x<>3
b: \(P=\left(\dfrac{-\left(x+2\right)}{x-2}+\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right)\cdot\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)
\(=\dfrac{-x^2-4x-4+4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)
\(=\dfrac{4x^2-8x}{\left(x+2\right)}\cdot\dfrac{-x}{\left(x-3\right)}=\dfrac{-4x^2\left(x-2\right)}{\left(x+2\right)\left(x-3\right)}\)
c: 2(x-1)=6
=>x-1=3
=>x=4
Thay x=4 vào P, ta đc:
\(P=\dfrac{-4\cdot4^2\cdot\left(4-2\right)}{\left(4+2\right)\left(4-3\right)}=\dfrac{-64\cdot2}{6}=\dfrac{-128}{6}=-\dfrac{64}{3}\)
a: ĐKXĐ: x<>0; x<>-3
b: \(=\dfrac{x^2+6x+9}{x\left(x+3\right)}\cdot\dfrac{2}{x+3}=\dfrac{2}{x}\)
c: Khi x=1/5 thì A=2:1/5=10
\(a)A=(\frac{x}{(x+6)(x+6)}-\frac{x-6}{x(x+6)})\cdot\frac{x(x+6)}{2x-6}+\frac{x}{x-6}\)
\(A=\frac{x^2-(x-6)^2}{x(x+6)(x-6)}\cdot\frac{x(x+6)}{2x-6}-\frac{x}{x-6}=\frac{(x-x+6)(x+x-6)}{(x-6)(2x-6)}-\frac{x}{x-6}\)
\(=\frac{6(2x-6)}{(x-6)(2x-6)}-\frac{x}{x-6}=\frac{6}{(x-6)}-\frac{x}{x-6}\cdot\frac{6-x}{x-6}=-1\)
\(b)\text{A luôn = -1 với mọi x}\)
\(A=\left(\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}\right).\dfrac{2x+6}{8x}\)
\(a,\) Điều kiện xác định: \(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\\8x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne3\\x\ne0\end{matrix}\right.\)
\(b,A=\left(\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}\right).\dfrac{2x+6}{8x}\)
\(=\left[\dfrac{\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}-\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}\right].\dfrac{2\left(x+3\right)}{8x}\)
\(=\dfrac{\left(x-3-x-3\right)\left(x-3+x+3\right)}{\left(x+3\right)\left(x-3\right)}.\dfrac{x+3}{4x}\)
\(=\dfrac{-6.2x}{\left(x-3\right)}.\dfrac{1}{4x}\)
\(=\dfrac{-12x}{4x\left(x-3\right)}\)
\(=\dfrac{-3}{x-3}\)
\(c,A=\dfrac{1}{2}\Rightarrow\dfrac{-3}{x-3}=\dfrac{1}{2}\Leftrightarrow x=-3\)
a) ĐKXĐ:
\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)
b) \(A=\dfrac{x^2-2x+1}{x^2-1}\)
\(A=\dfrac{x^2-2\cdot x\cdot1+1^2}{x^2-1^2}\)
\(A=\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\)
\(A=\dfrac{x-1}{x+1}\)
c) Thay x = 3 vào A ta có:
\(A=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)
a) ĐKXĐ:
\(9x^2-y^2\ne0\Leftrightarrow\left(3x\right)^2-y^2\ne0\Leftrightarrow\left(3x-y\right)\left(3x+y\right)\ne0\)
\(\Leftrightarrow3x\ne\pm y\)
b) \(B=\dfrac{6x-2y}{9x^2-y^2}\)
\(B=\dfrac{2\cdot3x-2y}{\left(3x\right)^2-y^2}\)
\(B=\dfrac{2\left(3x-y\right)}{\left(3x+y\right)\left(3x-y\right)}\)
\(B=\dfrac{2}{3x+y}\)
Thay x = 1 và \(y=\dfrac{1}{2}\) và B ta có:
\(B=\dfrac{2}{3\cdot1+\dfrac{1}{2}}=\dfrac{2}{3+\dfrac{1}{2}}=\dfrac{2}{\dfrac{7}{2}}=\dfrac{4}{7}\)
a: \(A=\dfrac{-\left(x+2\right)^2-2x\left(x-2\right)-4x^2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)\left(x-3\right)}{\left(x-3\right)^2}\)
\(=\dfrac{-x^2-4x-4-2x^2+4x-4x^2}{\left(x+2\right)}\cdot\dfrac{-1}{x-3}\)
\(=\dfrac{-7x^2-4}{\left(x+2\right)}\cdot\dfrac{-1}{x-3}=\dfrac{7x^2+4}{\left(x+2\right)\left(x-3\right)}\)
b: Khi x=1/3 thì \(A=\dfrac{7\cdot\dfrac{1}{9}+4}{\left(\dfrac{1}{3}-2\right)\left(\dfrac{1}{3}-3\right)}=\dfrac{43}{40}\)
a: ĐKXĐ: x<>0; x<>6; x<>-6;x<>3
\(A=\left(\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right):\dfrac{2\left(x-3\right)}{x\left(x+6\right)}-\dfrac{x}{x-6}\)
\(=\dfrac{x^2-x^2+12x-36}{x\left(x+6\right)\left(x-6\right)}\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)
\(=\dfrac{12\left(x-3\right)}{x-6}\cdot\dfrac{1}{2\left(x-3\right)}-\dfrac{x}{x-6}\)
\(=\dfrac{6}{x-6}-\dfrac{x}{x-6}=-1\)
b: Khi \(x\in R\backslash\left\{0;6;-6;3\right\}\) thì A luôn bằng -1
c: Khi x=1 thì A=-1