Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |
= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 |
= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |
Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)
Vậy MinB = 2 <=> x = 2019
2. ĐKXĐ : x ≥ 0
Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)
=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)
Vậy MaxC = 673 <=> x = 0
Bài 2:
\(C=\frac{2019}{\sqrt{x}+3}\)
Vì C có tử = 2019 ko đổi
\(\Rightarrow\) Để C đạt max thì mẫu phải đạt min
+Có:\(\sqrt{x}\ge0với\forall x\\ \Rightarrow\sqrt{x}+3\ge3\)
+Dấu ''='' xảy ra khi ......tự lm :))
\(\Rightarrow\)Mẫu đạt min = 3 khi x=...
\(\Rightarrow\)C max = ... khi x=....
BÀi 1:
\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\\ \Leftrightarrow B=\left|x-2018\right|+\left|2020-x\right|+\left|x-2019\right|\\ \Leftrightarrow B=2+\left|x-2019\right|\\ \Leftrightarrow B\ge2\)
+Dấu ''='' xảy ra khi
\(\left\{{}\begin{matrix}x-2018\ge0\\x-2019\ge0\\x-2020\ge0\end{matrix}\right.\)
\(\Leftrightarrow x=2019\)
+Vậy \(B_{min}=2\) khi \(x=2019\)
Ta có : A = |x - 2006| + |2007 - x| ≥ |x - 2006 + 2007 - x|
= |(x - x) - 2006 + 2007| = |1| = 1
Dấu "=" xảy ra khi (x - 2006)(2007 - x) ≥ 0 => 2006 ≤ x ≤ 2007
Vậy gtnn của A là 1 tại 2006 ≤ x ≤ 2007
ap dung bdt \(|a|+|b|\ge|a+b|\) voi \(a.b\ge0\)
thi \(A\ge|x-2016+2007-x|=|1|=1\)
vay GTNN cua A = 1 . Dat duoc khi \(\left(x-2016\right)\left(2017-x\right)\ge0\)
<=> \(2016\le x\le2017\)
chuc ban hoc tot
Bài 1 :
Vì \(\sqrt{3x+2y+z}\ge0\forall x;y;z\)
\(\left|y-\frac{1}{2}\right|\ge0\forall y\)
\(\left(z-2\right)^2\ge0\forall z\)
\(\Rightarrow A\ge2018\forall x;y;z\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2y+z=0\\y-\frac{1}{2}=0\\z-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x+2\cdot\frac{1}{2}+2=0\\y=\frac{1}{2}\\z=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{2}\\z=2\end{cases}}}\)
Vậy........
Bài 2 :
Lý luận tương tự câu 1) ta có :
\(\hept{\begin{cases}x-1=0\\y+1=0\\x+y+z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\\1-1+z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\\z=0\end{cases}}}\)
Thay x; y; z vào P ta có :
\(P=1^{2018}+\left(-1\right)^{2019}+0^{2020}\)
\(P=1-1+0\)
\(P=0\)
\(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)
\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)
\(A=1-\frac{1}{\left|x-2017\right|+2019}\)
A nhỏ nhất khi \(1-\frac{1}{\left|x-2017\right|+2019}\)nhỏ nhất
khi \(\frac{1}{\left|x-2017\right|+2019}\)lớn nhất
khi \(\left|x-2017\right|+2019\)nhỏ nhất
mà |x - 2017| \(\ge0\)
=> |x - 2017| + 2019 \(\ge2019\)
Vậy A nhỏ nhất khi A = 2019 khi x - 2017 = 0 => x = 2017
1/
l2x+3l=x+2(1)
ta co l2x+3l=\(\hept{\begin{cases}2x+3voix\ge\frac{-3}{2}\\-2x-3voix< \frac{-3}{2}\end{cases}}\)
TH1: neu x>= -3/2 thi (1) <=>2x+3=x+2=>x=-1(chon)
TH2: neu x<= -3/2 thi (1) <=> -2x-3=x+2=>-3x=5=>x=-5/3(chon)
2/
de A dat gtnn thi lx-2006l va l2007l dat gtnn
ma lx-2006l va l2007-xl >=0
=> gtnn cua lx-2006l=0;l2007-xl=0
=> x=2006 hoac 2007
=> gtnn A=1
Đặt\(\sqrt{x-2006}=a\)
=> \(A=\frac{a+2019-1}{a+2019}=1-\frac{1}{a+2019}\)
Để A đạt GTNN => a+2019 bé nhất, mà \(a+2019=\sqrt{x-2006}+2019\)
=> x-2006=0=> x=2006,lúc đó A=\(\frac{2018}{2019}\)
Vậy GTNN của A=\(\frac{2018}{2019}\)khi x=2006
do x lớn hơn hoặc = 2006
=> x-2006 lớn hơn hoặc = 0
vậy A lớn hơn hoặc bằng 2008/2009
dấu = xảy ra khi x=2006