Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=\dfrac{3n+2}{n+1}=\dfrac{3\left(n+1\right)-1}{n+1}=3-\dfrac{1}{n+1}\)
Ta có : \(\left\{{}\begin{matrix}A\in Z\\3\in Z\end{matrix}\right.\) \(\Leftrightarrow\dfrac{1}{n+1}\in Z\)
\(\Leftrightarrow1⋮n+1\Leftrightarrow n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
Ta có :
+) \(n+1=1\Leftrightarrow n=0\left(tm\right)\)
+) \(n+1=-1\Leftrightarrow n=-2\left(tm\right)\)
Vậy...
b/ Gọi \(d=ƯCLN\) \(\left(3n+2,n+1\right)\) \(\left(d\in N\cdot\right)\)
Ta có :
\(\left\{{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)=\left\{1\right\}\)
\(\LeftrightarrowƯCLN\) \(\left(3n+2,n+1\right)=1\)
\(\Leftrightarrow A=\dfrac{3n+2}{n+1}\) là phân số tối giản với mọi n
Vậy...
Để A là phân số thì 3n + 7 ko chia hết cho n + 1
<=> n + 1 khác Ư(4) = {-1;-2;-4;1;2;4}
=> n khác {-2;-3;-5;0;1;3}
Để A là số nguyên thì 3n + 7 chia hết cho n + 1
=> 3n + 3 + 4 chia hết cho n + 1
=> 3.(n + 1) + 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4) = {-4;-2;-1;1;2;4}
=> n = {-5;-3;-2;0;1;3}
a: Để A nguyên thì \(n+2\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{-1;-3;1;-5\right\}\)
b: n+6/n+7
Gọi d=ƯCLN(n+6;n+7)
=>n+6-n-7 chiahết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
a, Để A là số nguyên thì 3n+2 chia hết cho 7n+1
+) 3n+2 chia hết cho 7n+1=> 7(3n+2)chia hết cho 7n+1=>21n+14 chia hết cho 7n+1
+)có 7n+1chia hết cho 7n+1=>3(7n+1) chia hết cho 7n+1=>21n+3 chia hết cho 7n+1
=>(21n+14)-(21n+3)chia hết cho 7n+1=>21n+14-21n-3 chia hết cho 7n+1
=>7n+1 thuộc ước của 11= {-11;-1;1;11}
phần sau bạn tự làm nhé, mình ko viết kí hiệu được nên dùng tạm như vậy