K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

Ta có:\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(=\frac{1}{1.1}+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)

\(=\frac{1}{1}-\frac{1}{1}+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{50}-\frac{1}{50}\)

\(=0\)

Do 0<2

Nên A<2

30 tháng 3 2016

A = 1/ 1+1/22+1/32+. . . +1/50< 1+ 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5+ . . . + 1/49.50

<=> A < 1 + 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +. . . + 1/49 - 1/50

<=> A< 1 + 1 - 1/50 = 2 - 1/50 

Vậy A < 2

Nhớ k nhé bạn ^^

22 tháng 2 2017

a, \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(\Rightarrow1< 1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

Mà \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1+1-\frac{1}{50}=2-\frac{1}{50}< 2\)

\(\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2\Rightarrow A< 2\left(đpcm\right)\)

b, B = 2 + 22 + 23 +...+ 230

= (2+22+23+24+25+26)+...+(225+226+227+228+229+230)

= 2(1+2+22+23+24+25)+...+225(1+2+22+23+24+25)

= 2.63+...+225.63

= 63(2+...+225)

Vì 63 chia hết cho 21 nên 63(2+...+225) chia hết cho 21 

Vậy B chia hết cho 21

22 tháng 2 2017

Cảm ơn bn nhìu nha !!! 

29 tháng 4 2018

Mk chỉ làm đc bài 2 thôi!

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(\Rightarrow2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)

\(\Rightarrow2S-S=6-\frac{3}{2^9}\)

\(\Rightarrow S=6-\frac{3}{2^9}\)

Chúc bạn học tốt ( sai thì đừng ném đá ) !

29 tháng 4 2018

Ta có :

A = \(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}\)\(\frac{1}{1.1}+\frac{1}{1.2}+...+\frac{1}{49.50}\)

A < \(1-1+1-\frac{1}{2}+...+\frac{1}{49}-\frac{1}{50}\)

A < 1 - 1/50 = 49/50 < 2

Vậy A < 2

18 tháng 3 2018

Áp dụng công thức \(\frac{1}{a-1}-\frac{1}{a}=\frac{1}{\left(a-1\right)a}>\frac{1}{a.a}=\frac{1}{a^2}\). Ta có:

\(\frac{1}{2^2}< 2-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)

.  .  .   .  .

\(\frac{1}{50^2}< \frac{1}{49}-\frac{1}{50}\)

_________________________________________________

\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2-\frac{1}{50}=\frac{99}{50}\)

Vậy:A = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2^{\left(đpcm\right)}\)

20 tháng 3 2018

hay thế

6 tháng 5 2016

Đề bài hỏi j vậy

6 tháng 5 2016

1/1^2 < 1/1x2 < 1 -  1/2

1/2^2 < 1/2x3 < 1/2 -1/3

...

1/50^2 < 1/50x51 < 1/50 - 1/51

Tính tổng ta có A <1-1/51 <2

29 tháng 3 2017

câu hỏi của bạn tớ cũng đang mắc 

29 tháng 3 2017

Bạn cũng có đề này à nguyễn tiến hanh ?

31 tháng 5 2017

\(A=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}\)

\(=\frac{1}{1.1}+\frac{1}{2.2}+...+\frac{1}{50.50}\)

\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=2-\frac{1}{50}< 2\)

Vậy A < 2

31 tháng 5 2017

TỔNG A BAO GỒM CÁC SỐ HẠNG ĐC BIỂU DIỄN DƯỚI DẠNG PHÂN SỐ CÓ MẪU > TỬ NÊN TỔNG A CŨNG ĐC BIỂU DIỄN DƯỚI DẠNG CÁC PHÂN SỐ CÓ MẪU > TỬ HAY(TỬ KO CHIA HẾT CHO MẪU)KO THỂ VIẾT DƯỚI DẠNG SỐ TỰ NHIÊN.

VẬY: A<2.

22 tháng 3 2017

Cho mình xin lỗi là < 1 chứ không phải 11 đâu