K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1

Ta có : A = \(\dfrac{13}{x+5}\) => A = 13 : (x + 5) => x + 5 ∈ Ư(13) ∈ {-13;-1;1;13}

a , Để a có giá trị lớn nhất thì x + 5 phải là giá trị bé nhất và x + 5 ∈ N*

=> x + 5 = 1 => x = -4

b , Để A có giá trị bé nhất thì x + 5 phải là giá trị lớn nhất và x + 5 phải là số nguyên âm

=> x + 5 = -1 => x = -6

7 tháng 1

hi

27 tháng 12 2023

Ta có : A = \(\dfrac{2024}{x-99}\) => A = 2024 : (x - 99) =. x - 99 ∈ Ư(2024) ∈ {1;-1;2.....,2024;-2024}   (Nhiều quá ghi không hết )

a, Để A có giá trị lớn nhất thì x - 99 phải là giá trị nhỏ nhất và x - 99 ∈ N*

=> x - 99 = 1 => x = 100

b,Để A có giá trị nhỏ nhất thì x - 99 phải là giá trị lớn nhất và x - 99 phải là số nguyên âm

=> x - 99 = -1 => x = 98

26 tháng 12 2023

gap voi ah

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

6 tháng 8 2023

ko cần làm câu a nha các bạn

a: \(T=\dfrac{2017-x}{10-x}=\dfrac{x-2017}{x-10}\)

Để T nguyên x-10-2007 chia hết cho x-10

=>\(x-10\in\left\{1;-1;3;-3;9;-9;-223;223;669;-669;2007;-2007\right\}\)

=>\(x\in\left\{11;9;13;7;19;1;-213;233;679;-689;2017;-1997\right\}\)

b: Để T lớn nhất thì \(1-\dfrac{2007}{x-10}_{Max}\)

=>2007/x-10 min

=>x-10=2007

=>x=2017

28 tháng 5 2021

\(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)

\(a)\)

\(\text{Để A có giá trị nguyên: }\)

\(\frac{9}{x-4}\in Z\)

\(x-4\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

\(\rightarrow x\in\left\{1;3;\pm5;7;13\right\}\)

\(b)\)

\(\text{Để A có giá trị lớn nhất: }\)

\(\frac{9}{x-4}\)\(\text{lớn nhất}\)

\(x-4=1\)

\(x=5\)

\(c)\)

\(\text{Để A đạt giá trị nhỏ nhất:}\)

\(\frac{9}{x-4}\)\(\text{nhỏ nhất}\)

\(x-4=-1\)

\(x=3\)

Cho \(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\left(ĐK:x\in Z,x\ne4\right)\)

Để A nguyên \(\Rightarrow9⋮x-4\)hay \(x-4\inƯ\left(9\right)\)

Ta có \(x-4\inƯ\left(9\right)\in\left\{\pm1;\pm3;\pm9\right\}\)

\(\Rightarrow x\in\left\{5;3;7;1;13;-5\right\}\)

b, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{max}\)khi \(B_{max}\)

Vì \(9>0\)để B đặt GTLN \(\Rightarrow\hept{\begin{cases}x-4>0\\\left(x-4\right)_{min}\end{cases}}\)

Mà \(x\in N\)\(\Rightarrow x-4=1\)

\(\Rightarrow x=5\)

\(\Rightarrow B_{max}=\frac{9}{5-4}=9\)

\(\Rightarrow A_{max}=1+9=10\)khi \(x=5\)

c, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{min}\)khi \(B_{min}\)

Vì \(9>0\)để B đạt GTNN \(\Rightarrow\hept{\begin{cases}x-4< 0\\\left(x-4\right)_{max}\end{cases}}\)

Mà \(x\in N\)\(\Rightarrow x-4\in Z\)

\(\Rightarrow x-4=-1\)

\(\Rightarrow x=3\)

\(\Rightarrow B_{min}=\frac{9}{3-4}=-9\)

\(\Rightarrow A_{min}=1+\left(-9\right)=\left(-8\right)\)khi \(x=3\)

3 tháng 7

a; A =  \(\dfrac{1}{15}\) \(\times\) \(\dfrac{225}{x+2}\) + \(\dfrac{3}{14}\) \(\times\) \(\dfrac{196}{3x+6}\) (đk \(x\) ≠ - 2)

   A =     \(\dfrac{15}{x+2}\) + \(\dfrac{3\times14}{3\times\left(x+2\right)}\)

   A =      \(\dfrac{15}{x+2}\) +  \(\dfrac{14}{x+2}\) 

   A = \(\dfrac{29}{x+2}\) 

3 tháng 7

b; A = \(\dfrac{29}{x+2}\) (-2 ≠ \(x\) \(\in\) Z)

   A  \(\in\) Z ⇔ 29 ⋮ \(x\) + 2

   \(x\) + 2 \(\in\) Ư(29) = {-29; - 1; 1; 29}

 Lập bảng ta có: 

\(x\) + 2 - 29 - 1 1 29
\(x\) -31 -3 -1 27

Theo bảng trên ta có: \(x\) \(\in\) {- 31; -3; -1; 27}

Vậy \(x\) \(\in\) {-31; -3; -1; 27}

  

 

 

20 tháng 12 2016

Để A đạt giá trị lớn nhất thì 1000-trị tuyệt đối của x+5 = 1000

Suy ra x+5= 0

Vay x= 0-5 = -5

Chắc chắn

20 tháng 12 2016

Nhớ k nha

8 tháng 2 2018

\(\text{a) ĐKXĐ: x}\ne-2\)

\(\text{ }\Rightarrow\frac{x+5}{x+2}=1+\frac{3}{x+2}.\text{ Để A}\in Z\text{ thì x+2}\inƯ\left(3\right)=\left\{\mp1;\mp3\right\}\)

+ Nếu x+2=-3 thì x=-5

+ Nếu x+2=-1 thì x=-3

+ Nếu x+2=1 thì x=-1

+ Nếu x+2=3 thì x=1

b) Với x khác -2

Để A lớn nhất => \(1+\frac{3}{x+2}\)lớn nhất => x+2 nhỏ nhất và >0

=> x+2  = 1 => x  = - 1 

Vậy A max = 4 khi và chỉ khi x=-1