Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = \(\dfrac{2024}{x-99}\) => A = 2024 : (x - 99) =. x - 99 ∈ Ư(2024) ∈ {1;-1;2.....,2024;-2024} (Nhiều quá ghi không hết )
a, Để A có giá trị lớn nhất thì x - 99 phải là giá trị nhỏ nhất và x - 99 ∈ N*
=> x - 99 = 1 => x = 100
b,Để A có giá trị nhỏ nhất thì x - 99 phải là giá trị lớn nhất và x - 99 phải là số nguyên âm
=> x - 99 = -1 => x = 98
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Cho T=2017-x/10-x , tìm các giá trị nguyên của x để a, T có giá trị nguyên. b, T có giá trị lớn nhất
a: \(T=\dfrac{2017-x}{10-x}=\dfrac{x-2017}{x-10}\)
Để T nguyên x-10-2007 chia hết cho x-10
=>\(x-10\in\left\{1;-1;3;-3;9;-9;-223;223;669;-669;2007;-2007\right\}\)
=>\(x\in\left\{11;9;13;7;19;1;-213;233;679;-689;2017;-1997\right\}\)
b: Để T lớn nhất thì \(1-\dfrac{2007}{x-10}_{Max}\)
=>2007/x-10 min
=>x-10=2007
=>x=2017
\(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)
\(a)\)
\(\text{Để A có giá trị nguyên: }\)
\(\frac{9}{x-4}\in Z\)
\(x-4\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\rightarrow x\in\left\{1;3;\pm5;7;13\right\}\)
\(b)\)
\(\text{Để A có giá trị lớn nhất: }\)
\(\frac{9}{x-4}\)\(\text{lớn nhất}\)
\(x-4=1\)
\(x=5\)
\(c)\)
\(\text{Để A đạt giá trị nhỏ nhất:}\)
\(\frac{9}{x-4}\)\(\text{nhỏ nhất}\)
\(x-4=-1\)
\(x=3\)
Cho \(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\left(ĐK:x\in Z,x\ne4\right)\)
Để A nguyên \(\Rightarrow9⋮x-4\)hay \(x-4\inƯ\left(9\right)\)
Ta có \(x-4\inƯ\left(9\right)\in\left\{\pm1;\pm3;\pm9\right\}\)
\(\Rightarrow x\in\left\{5;3;7;1;13;-5\right\}\)
b, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{max}\)khi \(B_{max}\)
Vì \(9>0\)để B đặt GTLN \(\Rightarrow\hept{\begin{cases}x-4>0\\\left(x-4\right)_{min}\end{cases}}\)
Mà \(x\in N\)\(\Rightarrow x-4=1\)
\(\Rightarrow x=5\)
\(\Rightarrow B_{max}=\frac{9}{5-4}=9\)
\(\Rightarrow A_{max}=1+9=10\)khi \(x=5\)
c, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{min}\)khi \(B_{min}\)
Vì \(9>0\)để B đạt GTNN \(\Rightarrow\hept{\begin{cases}x-4< 0\\\left(x-4\right)_{max}\end{cases}}\)
Mà \(x\in N\)\(\Rightarrow x-4\in Z\)
\(\Rightarrow x-4=-1\)
\(\Rightarrow x=3\)
\(\Rightarrow B_{min}=\frac{9}{3-4}=-9\)
\(\Rightarrow A_{min}=1+\left(-9\right)=\left(-8\right)\)khi \(x=3\)
a; A = \(\dfrac{1}{15}\) \(\times\) \(\dfrac{225}{x+2}\) + \(\dfrac{3}{14}\) \(\times\) \(\dfrac{196}{3x+6}\) (đk \(x\) ≠ - 2)
A = \(\dfrac{15}{x+2}\) + \(\dfrac{3\times14}{3\times\left(x+2\right)}\)
A = \(\dfrac{15}{x+2}\) + \(\dfrac{14}{x+2}\)
A = \(\dfrac{29}{x+2}\)
b; A = \(\dfrac{29}{x+2}\) (-2 ≠ \(x\) \(\in\) Z)
A \(\in\) Z ⇔ 29 ⋮ \(x\) + 2
\(x\) + 2 \(\in\) Ư(29) = {-29; - 1; 1; 29}
Lập bảng ta có:
\(x\) + 2 | - 29 | - 1 | 1 | 29 |
\(x\) | -31 | -3 | -1 | 27 |
Theo bảng trên ta có: \(x\) \(\in\) {- 31; -3; -1; 27}
Vậy \(x\) \(\in\) {-31; -3; -1; 27}
Để A đạt giá trị lớn nhất thì 1000-trị tuyệt đối của x+5 = 1000
Suy ra x+5= 0
Vay x= 0-5 = -5
Chắc chắn
\(\text{a) ĐKXĐ: x}\ne-2\)
\(\text{ }\Rightarrow\frac{x+5}{x+2}=1+\frac{3}{x+2}.\text{ Để A}\in Z\text{ thì x+2}\inƯ\left(3\right)=\left\{\mp1;\mp3\right\}\)
+ Nếu x+2=-3 thì x=-5
+ Nếu x+2=-1 thì x=-3
+ Nếu x+2=1 thì x=-1
+ Nếu x+2=3 thì x=1
b) Với x khác -2
Để A lớn nhất => \(1+\frac{3}{x+2}\)lớn nhất => x+2 nhỏ nhất và >0
=> x+2 = 1 => x = - 1
Vậy A max = 4 khi và chỉ khi x=-1
Ta có : A = \(\dfrac{13}{x+5}\) => A = 13 : (x + 5) => x + 5 ∈ Ư(13) ∈ {-13;-1;1;13}
a , Để a có giá trị lớn nhất thì x + 5 phải là giá trị bé nhất và x + 5 ∈ N*
=> x + 5 = 1 => x = -4
b , Để A có giá trị bé nhất thì x + 5 phải là giá trị lớn nhất và x + 5 phải là số nguyên âm
=> x + 5 = -1 => x = -6
hi