K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2021

\(A=\left(a+b\right)^2\)

\(=a^2+2ab+b^2\)

\(=\left(a^2-2ab+b^2\right)+4ab\)

\(=\left(a-b\right)^2+4ab\)

\(=m^2+4n\)

\(C=a^3-b^3\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(=m[\left(a^2-2ab+b^2\right)+3ab]\)

\(=m[\left(a-b\right)^2+3ab]\)

\(=m\left(m^2+3n\right)\)

\(=m^3+3n^2\)

b: Ta có: \(N=a^3+b^3+3ab\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\)

\(=1-3ab+3ab\)

=1

10 tháng 9 2017

a) a^3+b^3

 =(a+b).(a^2-ab+b^2)

=S.(a^2+2ab+b^2-3ab)

=S.(a+b)^2-3ab

=S.S^2-3P

=S^3-3P

10 tháng 9 2017

c) C=a^2+ab+b^2

=a^2+2ab+b^2-ab

=(a+b)^2-ab

=S^2-P

\(M=\left(2x+5\right)^3-30x\left(2x+5\right)-8x^3\)

\(=\left(2x+5\right)\left(4x^2+20x+25-30x\right)-8x^3\)

\(=\left(2x+5\right)\left(4x^2-10x+25\right)-8x^3\)

\(=8x^3+125-8x^3\)

=125

2 tháng 10 2021

CẢM ƠN bạn nhiều lắm !!!!!!!yeuyeu

23 tháng 7 2018

2) b)

Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\) 

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)

\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)

\(ab+bc+ac=-60:2=-30\)

23 tháng 7 2018

a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)

                           = (x+y)^3

                           = 1^3 =1

b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac

    9^2 = 141 +2(ab+bc+ac)

    -60 = 2(ab+bc+ac)

    ab+ac+bc=-30

Vậy M=-30

c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)

       = x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3

       = x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3

       = 0

Vậy N=0 .Chúc bạn học tốt.

       

20 tháng 10 2021

\(a,A=\left(x^2-x\right)\left(x^2-x-12\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)+36-36\\ A=\left(x^2-x+6\right)^2-36\ge-36\\ A_{min}=-36\Leftrightarrow x^2-x+6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\ b,B=4x^4+4x^3+5x^2+4x+3\\ B=\left(4x^4+4x^3+x^2\right)+\left(x^2+4x+4\right)-1\\ B=x^2\left(2x+1\right)^2+\left(x+2\right)^2-1\ge-1\\ B_{min}=-1\Leftrightarrow\left\{{}\begin{matrix}x\left(2x+1\right)=0\\x+2=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Vậy dấu \("="\) không xảy ra

9 tháng 6 2020

a) \(A=\frac{1}{y-1}-\frac{y}{1-y^2}\left(y\ne\pm1\right)\)

\(\Leftrightarrow A=\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y+1\right)}=\frac{y+1}{\left(y-1\right)\left(y+1\right)}+\frac{y}{\left(y-1\right)\left(y+1\right)}=\frac{2y+1}{\left(y-1\right)\left(y+1\right)}\)

Thay y=2 (tm) vao A ta co:

\(A=\frac{2\cdot2+1}{\left(2-1\right)\left(2+1\right)}=\frac{5}{3}\)

Vay \(A=\frac{5}{3}\)voi y=2

b) Ta co: \(\hept{\begin{cases}A=\frac{2y+1}{\left(y-1\right)\left(y+1\right)}\left(y\ne\pm1\right)\\B=\frac{y^2-y}{2y+1}=\frac{y\left(y-1\right)}{2y+1}\left(y\ne\frac{-1}{2}\right)\end{cases}}\)

\(\Rightarrow M=\frac{2y+1}{\left(y-1\right)\left(y+1\right)}\cdot\frac{y\left(y-1\right)}{2y+1}=\frac{\left(2y+1\right)\cdot y\cdot\left(y-1\right)}{\left(y-1\right)\left(y+1\right)\left(2y+1\right)}=\frac{y}{y+1}\)

25 tháng 8 2021

chắc đề cho x,y chứ x+y=6,x-y=4,xy=5

(làm ra bạn tự thay số vào tính)

a,\(=>A=\left(x+y\right)^2-2xy=.....\)

b,\(=>B=\left(x+y\right)^3-3xy\left(x+y\right)+xy=....\)

c,\(=>C=\left(x-y\right)\left(x+y\right)=....\)

d,\(=>D=\dfrac{x+y}{xy}=.....\)

e,\(=>E=\dfrac{x^2+y^2}{xy}=\dfrac{\left(x+y\right)^2-2xy}{xy}=...\)

25 tháng 8 2021

thanks

 

8 tháng 7 2019

Phần bài 2 bn ghi đề rõ hơn đc ko