Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,b,c< 0 mà a+b+c bé hơn hoặc bằng 1
a+b+c ít nhất phải bằng 3 chứ!
Ta có: \(\frac{a}{1+b^2}=\frac{a\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab}{1+b^2}\)
\(1+b^2\ge2b\) \(\Rightarrow\frac{ab^2}{1+b^2}\le\frac{ab^2}{2b}=\frac{ab}{2}\)\(\Rightarrow-\frac{ab^2}{1+b^2}\ge-\frac{ab}{2}\)
Do đó: \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\)
Tương tự: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\); \(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Suy ra \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}+\frac{ab+bc+ca}{2}\ge a+b+c\)
Mặt khác ta có: \(3\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow\frac{3}{a+b+c}\le1\)
\(\Rightarrow a+b+c\ge3\)
Do đó; \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}+\frac{ab+bc+ca}{2}\ge a+b+c\ge3\)(đpcm)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)
đặt \(\sqrt{\frac{ab}{c}}=x;\sqrt{\frac{bc}{a}}=y;\sqrt{\frac{ca}{b}}=z\Rightarrow xy+yz+zx=1\)
\(P=\frac{ab}{ab+c}+\frac{bc}{bc+a}+\frac{ca}{ca+b}\)
\(=\frac{\frac{ab}{c}}{\frac{ab}{c}+1}+\frac{\frac{bc}{a}}{\frac{bc}{a}+1}+\frac{\frac{ca}{b}}{\frac{ca}{b}+1}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}\)
\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}=\frac{3}{4}\left(Q.E.D\right)\)
\(\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2};\frac{z^3}{x\left(y+2z\right)}\ge\frac{x+y+z}{3}\)
Giải:
Giả sử \(p\) là số nguyên tố.
Từ \(a^2b^2=p\left(a^2+b^2\right)\Rightarrow a^2+b^2⋮p\) hoặc \(a⋮p\) và \(b⋮p\left(1\right)\)
\(\Rightarrow a^2b^2⋮p^2\Rightarrow p\left(a^2+b^2\right)⋮p^2\Rightarrow a^2+b^2⋮p\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow a⋮p\) và \(b⋮p\)
Từ \(a\ge p,b\ge p\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\le\frac{2}{p^2}\Rightarrow\frac{1}{p}\le\frac{2}{p^2}\Rightarrow p\le2\left(3\right)\)
Từ \(a>2,b>2\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\Rightarrow p>2\left(4\right)\)
Từ \(\left(3\right),\left(4\right)\Rightarrow\) Mâu thuẫn \(\Rightarrow p\) là hợp số (Đpcm).
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\ge0\)
\(\Leftrightarrow\frac{1+ab-1-a^2}{\left(1+a^2\right)\left(1+ab\right)}+\frac{1+ab-1-b^2}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\frac{a\left(b-a\right)\left(1+b^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}+\frac{b\left(a-b\right)\left(1+a^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\frac{a\left(b-a\right)\left(1+b^2\right)-b\left(b-a\right)\left(1+a^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\frac{\left(b-a\right)\left(a+ab^2-b-a^2b\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\forall ab\ge1\)
\(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\)
\(\Leftrightarrow a-\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}+b-\dfrac{bc\left(b+c\right)}{b^2+bc+c^2}+c-\dfrac{ca\left(c+a\right)}{c^2+ca+a^2}\)
\(\Leftrightarrow a+b+c-\left[\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}+\dfrac{bc\left(b+c\right)}{b^2+bc+c^2}+\dfrac{ca\left(c+a\right)}{c^2+ca+a^2}\right]\)
Áp dụng bất đẳng thức Cauchy - Schwarz cho 3 bộ số thực không âm
\(\Rightarrow\left\{{}\begin{matrix}a^2+ab+b^2\ge3\sqrt[3]{a^3b^3}=3ab\\b^2+bc+c^2\ge3\sqrt[3]{b^3c^3}=3bc\\c^2+ca+a^2\ge3\sqrt[3]{c^3a^3}=3ca\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}\le\dfrac{ab\left(a+b\right)}{3ab}=\dfrac{a+b}{3}\\\dfrac{bc\left(b+c\right)}{b^2+bc+c^2}\le\dfrac{bc\left(b+c\right)}{3bc}=\dfrac{b+c}{3}\\\dfrac{ca\left(c+a\right)}{c^2+ca+a^2}\le\dfrac{ca\left(c+a\right)}{3ca}=\dfrac{c+a}{3}\end{matrix}\right.\)
\(\Rightarrow\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}+\dfrac{bc\left(b+c\right)}{b^2+bc+c^2}+\dfrac{ca\left(c+a\right)}{c^2+ca+a^2}\le\dfrac{2\left(a+b+c\right)}{3}\)
\(\Leftrightarrow a+b+c-\left[\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}+\dfrac{bc\left(b+c\right)}{b^2+bc+c^2}+\dfrac{ca\left(c+a\right)}{c^2+ca+a^2}\right]\ge a+b+c-\dfrac{2\left(a+b+c\right)}{3}\)
\(\Leftrightarrow a+b+c-\left[\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}+\dfrac{bc\left(b+c\right)}{b^2+bc+c^2}+\dfrac{ca\left(c+a\right)}{c^2+ca+a^2}\right]\ge\dfrac{a+b+c}{3}\)
\(\Leftrightarrow\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\ge\dfrac{a+b+c}{3}\) ( đpcm )
Dấu "=" xảy ra khi \(a=b=c\)
Vì a,b,c là các số tự nhiên lớn hơn 0 nên không mất tính tổng quát , ta giả sử \(a\ge b\ge c\ge1\)
Cần chứng minh \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{3}{1+abc}\)
bđt \(\Leftrightarrow\left(\frac{1}{1+a^2}-\frac{1}{1+abc}\right)+\left(\frac{1}{1+b^2}-\frac{1}{1+abc}\right)+\left(\frac{1}{1+c^2}-\frac{1}{1+abc}\right)\ge0\)
Ta sẽ chứng minh mỗi biểu thức trong ngoặc đều không nhỏ hơn 0.
Ta xét : \(\frac{1}{1+a^2}-\frac{1}{1+abc}=\frac{1+abc-1-a^2}{\left(1+a^2\right)\left(1+abc\right)}=\frac{a\left(bc-a\right)}{\left(1+a^2\right)\left(1+abc\right)}\)
Vì \(a\ge b\ge c\ge1\)nên \(\frac{a}{b}\ge1,\frac{1}{c}\le1\Rightarrow\frac{a}{bc}\le1\Rightarrow bc\ge a\Rightarrow bc-a\ge0\Rightarrow a\left(bc-a\right)\ge0\)
Do đó \(\frac{1}{1+a^2}-\frac{1}{1+abc}\ge0\)(1)
Tương tự với các biểu thức trong các ngoặc còn lại , ta cũng có \(\frac{1}{1+b^2}-\frac{1}{1+abc}\ge0\)(2)
\(\frac{1}{1+c^2}-\frac{1}{1+abc}\ge0\)(3)
Từ (1), (2), (3) ta có đpcm.
Biết chết liền đó tỷ àk