K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

\(a^3+3a=b^3+3b=2=>a^2+3a-b^2-3b=0\)

\(=>\left(a-b\right)\left(a+b\right)+3\left(a-b\right)=0\)

\(=>\left(a-b\right)\left(a+b+3\right)=0\)

\(=>\orbr{\begin{cases}a-b=0\\a+b+3=0\end{cases}=>\orbr{\begin{cases}a+b=2a=2b\\a+b=-3\end{cases}}}\)

21 tháng 7 2019

Ta có : \(a^2+3a=b^2+3b=2=>a^2+3a-b^2-3b=0\)

\(=>\left(a-b\right)\left(a+b\right)+3\left(a-b\right)=0\)

\(=>\left(a-b\right)\left(a+b+3\right)=0\)

\(=>\orbr{\begin{cases}a-b=0\\a+b+3=0\end{cases}=>\orbr{\begin{cases}a=b\\a+b=-3\end{cases}}}=>\orbr{\begin{cases}a+b=2a=2b\\a+b=-3\end{cases}}\)

21 tháng 7 2019

\(a^2+3a=b^2+3b=2\)

\(\Rightarrow a^2+3a-b^2-3b=0\)

\(\Rightarrow\left(a-b\right).\left(a+b\right)+3.\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right).\left(a+b+3\right)=0\Leftrightarrow\orbr{\begin{cases}a=b\\a+b=-3\end{cases}}\)

Vì a,b là các số thực phân biệt => a+b=-3 

5 tháng 8 2016

a)  Ta có : a^2+3a=b^2+3b \(\Leftrightarrow\)(a^2 - b^2) + 3(a - b) = 0 \(\Leftrightarrow\)(a - b)(a+b+3)=0 \(\Leftrightarrow\)a+b+3=0 (vì a,b phan biet nen a - b \(\ne\)0)

\(\Leftrightarrow\)a+b=-3 (đpcm)

b)  Ta có : a^2 +2ab +b^2 =9 (vì a+b=-3) (1)

  • Vì a^2+3a=b^2+3b=2 \(\Rightarrow\)a^2+b^2+3(a+b)=4 \(\Rightarrow\)a^2+b^2=13 (2)     

Lấy (1) trừ (2) suy ra : 2ab=-4 \(\Leftrightarrow\)-ab=2 (3)

Lấy (2) cộng (3) suy ra : a^2-ab+b^2=15

Do đó : a^3+b^3=(a+b)(a^2-ab+b^2)=(-3)*15=-45(đpcm)

5 tháng 8 2016

cảm ơn nha

20 tháng 11 2020

mọi người giải giúp em bài này với 

a3 - 3a2+ 5a – 17 = 0   ,   b3 - 3b2 + 5b + 11 = 0   .   Tính a+b