Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bđt\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)(luôn đúng do bđt bunhia copxki)
Ta chứng minh BĐT tổng quát
\(\frac{a_1^2+a_2^2+..+a_n^2}{b_1+b_2+...+b_n}\ge\frac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\)
Đẳng thức xảy ra khi \(\frac{a_1}{b_1}=\frac{a_2}{b_2}=...=\frac{a_n}{b_n}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+...+\frac{a_n^2}{b_n}\right)\left(b_1+b_2+...+b_n\right)\ge\left(a_1+a_2+...+a_n\right)^2\)
\(\Leftrightarrow\frac{a_1^2+a_2^2+..+a_n^2}{b_1+b_2+...+b_n}\ge\frac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\) (ĐPCM)
BĐT này đúng với BĐT đề bài cho 2 số \(x,y\) dương
T/b: sau này BĐT thông dụng thì tên nó sẽ là BĐT C-S dạng Engel hay BĐT Svac :)
\(\frac{a^2+b^2}{2}\ge ab\)(1)
<=> \(a^2+b^2\ge2ab\)
<=> \(a^2+b^2-2ab\ge0\)
<=> \(\left(a-b\right)^2\ge0\)đúng với a, b bất kì
Vậy (1) đúng với mọi a, b bất kì
Giả sử BĐT đúng , Bình phương 2 vế đc
\(a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+b^2+c^2+d^2+2\left(ac+bd\right)\)
\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\).Bình phương 2 vế đc
\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)
\(\Leftrightarrow a^2d^2+b^2c^2\ge2abcd\Leftrightarrow\left(ad-bc\right)^2\ge0\)(luôn đúng)
Vậy BĐT luôn đúng mà bạn ghi sai dấu
b. \(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
-Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
2.
\(\dfrac{\left(a+b\right)^2}{2}\ge2ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )
Tương tự.......................
1. Xét hiệu : \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b-a}{ab}\)
Lại có: b - a < 0 ( a > b)
ab >0 ( a>0, b > 0)
\(\Rightarrow\dfrac{b-a}{ab}< 0\)
Vậy: \(\dfrac{1}{a}< \dfrac{1}{b}\)
2. Xét hiệu : \(\dfrac{\left(a+b\right)^2}{2}-2ab=\dfrac{a^2+2ab+b^2-4ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)
Vậy : \(\dfrac{\left(a+b\right)^2}{2}\ge2ab\) Xảy ra đẳng thức khi a = b
3. Xét hiệu : \(\dfrac{a^2+b^2}{2}-ab=\dfrac{a^2+b^2-2ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)
Vậy : \(\dfrac{a^2+b^2}{2}\ge ab\) Xảy ra đẳng thức khi a = b
\(\left(a^2+b^2\right)\left(1^2+1^2\right)>=\left(a+b\right)^2\)(bđt bunhiacopxki) dấu = xảy ra khi a=b
\(\Rightarrow2\left(a^2+b^2\right)>=\left(a+b\right)^2\Rightarrow2\cdot2\left(a^2+b^2\right)=4\left(a^2+b^2\right)>=2\left(a+b\right)^2\)
\(\Rightarrow\frac{a^2+b^2}{2}>=\frac{\left(a+b\right)^2}{4}=\left(\frac{a+b}{2}\right)^2\)
vậy \(\frac{a^2+b^2}{2}>=\left(\frac{a+b}{2}\right)^2\)dấu = xảy ra khi a=b