K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018

Tham khảo tại đây:

Câu hỏi của Carthrine Nguyễn - Toán lớp 7 | Học trực tuyến

31 tháng 8 2017

Ta có : x = 99

=> 100 = x + 1 

Thay vào A ta có : A = x2018 - 100x2017 + 100x2016 - ...... + 100x2 - 100x + 2019

=> A = x2018 - (x + 1)x2017 + (x + 1)x2016 - ...... + (x + 1)x2 - (x + 1)x + 2019

=> A = x2018 - x2018 - x2017 + x2017 + x2016 -.......+ x+ x2 - x2 + x + 2019

=> A = x + 2019

=> A = 99 + 2019

=> A = 2118

P/s : ko cần ! :D 

31 tháng 8 2017

Theo đề bài ra ta có :

x = 99  

Thay vào A ta có :

A = x2018 - 100x2017 + 100x2016 - ... + 100x2 - 100x + 2019

\(\Rightarrow\) A = x2018 - ( x + 1 ) x2017 + ( x + 1 ) x2016 - ... + ( x + 1 ) x2 - ( x + 1 ) x + 2019

\(\Rightarrow\) A = x2018 - x2018 - x2017 + x2017 + x2016- ... + x3 + x2 - x2 + x + 2019

\(\Rightarrow\) A = x + 2019

\(\Rightarrow\) A = 99 + 2019

\(\Rightarrow\) A = 2118 

8 tháng 10 2019

A = 2018^2 - 2016^2

A = (2018 - 2016)(2018 + 2016)

A = 2.4034

B = 2019^2 - 2017^2

B = (2019 - 2017)(2019 + 2017)

B = 2.4036

=> A < B

ggbgbgkbgbgkbokgbgobgkbkogokbgkobkogbkbgb,mb.gnl'g

câu trả lời ở bên dưới

gf'gbf

fgjfb

b

bk

gkbgobpgbogojbgmkh

gg

g

gg

g

g

g

g

g

g

gg

g

g

g

g

g

g

g

g

gg

g

g

g

g

g

g

fgfbgf

nơgnpgpngpnpgnpgpngpnmgknfbbngmnlkgnlmgngnlmbklfgbpfoigfg[e[gr

bố mày đéo bt

14 tháng 10 2019

\(A=\left(2018-2016\right)\left(2018+2016\right)=2.4034\)

\(B=\left(2019-2017\right)\left(2019+2017\right)=2.4036\)

Ta thấy 4034 < 4036 nên A < B.

14 tháng 10 2019

\(A=2018^2-2016^2=\left(2018+2016\right)\left(2018-2016\right)=4034.2\)

\(B=2019^2-2017^2=\left(2019+2017\right)\left(2019-2017\right)=4036.2\)

Vì 4036 > 4034 nên 4036 . 2 > 4034 . 2 nên B > A

11 tháng 12 2019

Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath

Thya các giá trị của a, b, c., d vào M . Tính đc M = 0

NV
25 tháng 3 2019

\(a;b;c\ne0\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}=\frac{1}{a+b+c}\)\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b=0\\ab=-c\left(a+b+c\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\ab+ac+bc+c^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\\left(a+c\right)\left(b+c\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\a+c=0\\b+c=0\end{matrix}\right.\)

\(M=\left(a^{2015}+b^{2015}\right)\left(a^{2017}+b^{2017}\right)\left(a^{2019}+b^{2019}\right)\)

- Nếu \(a+b=0\Rightarrow M=0\)

- Nếu \(\left[{}\begin{matrix}a+c=0\\b+c=0\end{matrix}\right.\) thì ko tính được giá trị cụ thể của M

Khi đó \(\left[{}\begin{matrix}M=\left(2018^{2015}+b^{2015}\right)\left(2018^{2017}+b^{2017}\right)\left(2018^{2019}+b^{2019}\right)\\M=\left(2018^{2015}+a^{2015}\right)\left(2018^{2017}+a^{2017}\right)\left(2018^{2019}+a^{2019}\right)\end{matrix}\right.\)

19 tháng 2 2023

a=0,b=1

a=1,b=0

a=b=0

a=b=1