Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a3 + b3 + c3 - 3ab = [(a + b)3 - 3ab(a + b)] + c3 - 3ab = [(a+ b)3 + c3] - 3ab. (-c) - 3ab
= (a + b+ c)3 - 3(a+ b).c.(a+ b+ c) + 3abc - 3ab = 3abc - 3ab = 3ab.(c - 1)
Giả sử a^3+b^3+c^3=3abc
<=> a^3+b^3+c^3-3abc=0
<=> (a+b)^3 -3ab(a+b) -3abc +c^3=0
<=>[(a+b)^3+c^3] -3ab(a+b+c) =0
<=> (a+b+c)[(a+b)^2-(a+b)c+c^3] -3ab(a+b+c)=0
<=> (a+b+c)[(a+b)^2-(a+b)c+c^3-3ab]=0
vì a+b+c =0 => đpcm
a)\(a^3+b^3+3ab=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab=a^2-ab+b^2+3ab=a^2+2ab+b^2=\left(a+b\right)^2=1^2=1\)
b) \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow0=0\)(đúng do \(a+b+c=0\))
Vậy nếu a+b+c=0 thì \(a^3+b^3+c^3=3abc\)
a(a-b)=0 +b(b-c)+c(c-a)=0 suy ra (a-b)2+(b-c)2+(c-a)2=0 suy ra a=b=c
Thay vào A ta đc min A=\(\frac{17}{4}\) tại a=b=c=\(\frac{1}{2}\)
Từ giả thiết => a = 0 hoặc a = b
* TH1: a = 0
b(b-c)+c(c-a)=0 <=> b(b-c)+c2=0 <=> b2 -bc + c2 =0 <=> \(\left(b-\frac{c}{2}\right)^2+\frac{3c^2}{4}=0\)
Điều này xảy ra khi và chỉ khi b - c/2 =0 và c = 0 => b = c = 0
Vậy a = b = c = 0 => A = 5
* TH2: a = b
b(b-c)+c(c-a)=0 <=> b(b-c)+c(c-b)=0 <=> b2 - 2bc + c2 =0 <=> (b-c)2 =0=> b = c
Vậy a =b=c => A = a3 + a3 +a3 - 3a3 + 3a2 - 3a + 5
= 3a2 - 3a + 5 = (3a2 - 3a + 3/4) + 17/4 = 3. (a-1/2)2 + 17/4
Để A nhỏ nhất => a -1/2 =0 => a = 1/2 => Amin = 17/4
17/4 < 5 => Vậy Amin = 17/4 khi a = b = c = 1/2
ở trên a(a-b)+b(b-c)+c(c-a)+0 suy ra a=b=c
thay vào M=a^3x3-3a^3=3a^2 -3a+5=3a^2+-3a+5
GTNN của M là GTNN của 3a^2-3a+5 là bằng 17/4
Câu hỏi của Trần Thị Thùy Linh 2004 - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
\(a+b+c=0\)
=>\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3a^2c+6abc=0\)
=>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=>\(a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\)
=>\(a^3+b^3+c^3=3abc\left(đpcm\right)\)
la a3+b3+c3=3abc chu mjk sua lun ngen
ta co:a+b+c=0
=>a+b=-c
=>(a+b)3=(-c)3
=>a3+3a2b+3ab2+b3=-c3
=>a3+b3+c3=-3ab(a-b)
=>a3+b3+c3=-3ab(-c)
=>a3+b3+c3=3abc(dfcm)
Tick nha
\(a^2+b^2>=2ab;b^2+c^2>=2bc;a^2+c^2>=2ac\Rightarrow2\left(a^2+b^2+c^2\right)>=2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2>=ab+bc+ac\)
dấu= xảy ra khi a=b=c
\(a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)=a^2-ab+b^2-bc+c^2-ca=0\)
\(\Rightarrow a^2+b^2+c^2=ab+bc+ca\Rightarrow a=b=c\)(chứng minh trện)
\(H=a^3+b^3+c^3-3abc+3ab-3c+5=a^3+a^3+a^3-3aaa+3aa-3a+5\)
\(=3a^3-3a^3+3a^2-3a+5=3a^2-3a+5=3\left(a^2-a+\frac{1}{4}\right)+\frac{17}{4}\)
\(=3\left(a^2-2\cdot\frac{1}{2}a+\left(\frac{1}{2}\right)^2\right)+\frac{17}{4}=3\left(a-\frac{1}{2}\right)^2+\frac{17}{4}>=\frac{17}{4}\)
dấu = xảy ra khi \(3\left(a-\frac{1}{2}\right)^2=0\Rightarrow a-\frac{1}{2}=0\Rightarrow a=\frac{1}{2}\)
vậy min H là \(\frac{17}{4}\)khi \(a=\frac{1}{2}\)
Sửa đề : Tính \(A=a^3+b^3+c^3-3abc\)
Giải
Ta có : \(A=a^3+b^3+c^3-3abc\)
\(\Leftrightarrow A=\left(a^3+b^3+3a^2b+3b^2a\right)+c^3-3a^2b-3b^2a-3abc\)
\(\Leftrightarrow A=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(\Leftrightarrow A=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(\Leftrightarrow A=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]\)
\(\Leftrightarrow A=0\left(a+b+c=0\right)\)
Vậy \(A=0\)