K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2018

ta có (a+b-c/c)+2=(a-b+c/b)+2=(-a+b+c/a)+2

=>a+b-c+2c/c=a-b+c+2b/b=-a+b+c+2a/a

=>a+b+c/c=a+b+c/b=a+b+c/a     (1)

Trường hợp 1

Nếu a+b+c=0 => a+b=-c

                       => b+c=-a

                       =>  a+c=-b

M= (-c)(-a)(-a)/abc = -1

Trường hợp 2

Từ (1) =>(a+b+c). 1/c =(a+b+c). 1/b =(a+b+c). 1/a

=>1/a=1/b=1/c

Từ (1) =>3(a+b+c)/a+b+c=3

hay (a+b/c)+1=(a+c/b)+1=(b+c/a)=2

9 tháng 11 2018

Nguyễn Trọng Tâm Đạt làm sai một TH nhé =)

trường hợp 2

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)

\(2+\frac{a+b-c}{c}=2+\frac{a-b+c}{b}=2+\frac{-a+b+c}{a}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)

\(\Rightarrow a=b=c\)

thay a=b=c vào M ta có

\(M=\frac{\left(b+b\right).\left(b+c\right).\left(c+a\right)}{a.b.c}=\frac{2a.2a.2a}{aaa}=\frac{8.a^3}{a^3}=8\)

Đặt \(\hept{\begin{cases}a-b=x\\b-c=y\\c-a=z\end{cases}}\)

\(A=\frac{2}{x}+\frac{2}{y}+\frac{2}{z}+\frac{x^2y^2z^2}{xyz}\)

\(A=\frac{\left(2y+2x\right).z+2xy}{xyz}+\frac{x^2+y^2+x^2}{xyz}\)

\(A=\frac{2yz+2xz+2xy}{xyz}+\frac{x^2+y^2+z^2}{xyz}\)

\(A=\frac{2yz+2xz+2xy+x^2+y^2+z^2}{xyz}=\frac{\left(x+y+z\right)^2}{xyz}\)

Có đúng k nhỉ k chắc

21 tháng 10 2018

Đặt \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}=t\)

\(\Rightarrow a=2016t,b=2017t,c=2018t\)

Ta có: \(4\left(a-b\right)\left(b-c\right)=4\left(2016t-2017t\right)\left(2017t-2018t\right)=4.\left(-t\right).\left(-t\right)=4t^2\)

\(\left(c-a\right)^2=\left(2018t-2016t\right)^2=\left(2t\right)^2=4t^2\)

Vậy \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)

21 tháng 10 2018

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

a/2016 = b/2017 = c/2018 = (a-b) / (2016-2017) = (b-c) / (2017-2018) = (c-a) / (2018-1026)

                                          = (a-b) / (-1) = (b-c) / ( -1) = (c-a) / 2

Vì (a-b) / (-1) = (b-c) / ( -1) = (c-a) / 2 nên (a-b) / (-1) . (b-c) / (-1) =[ (c-a) / 2 ]2

                                                      => (a-b)(b-c) / (-1).(-1) = (c-a)/  22

                                                      => (a-b)(b-c).1= (c-a)2 / 4

                                                       => (a-b)(b-c) =(c-a)2 / 4

                                                       => 4(a-b)(b-c)= (c-a)2

16 tháng 1 2023

`VT = (b-c)/((a-b)(a-c)) + (c-a)/((b-c)(b-a)) +(a-b)/((c-a)(c-b)) = 2/(a-b) + 2/(b-c) + 2/(c-a)`

`=-((a-b-a+c)/((a-b)(a-c))+(b-c-b+a)/((b-c)(b-a))+(c-a-c+b)/((c-a)(c-b)))`

`=-((a-b)/((a-b)(a-c))-(a-c)/((a-b)(a-c))+(b-c)/((b-c)(b-a))-(b-a)/((b-c)(b-a))+(c-a)/((c-a)(c-b))-(c-b)/((c-a)(c-b)))`

`= 1/(c-a)+1/(a-b)+1/(a-b)+1/(b-c)+1/(b-c)+1/(c-a)`

`=2/(a-b)+2/(b-c)+2/(c-a)=VP(đpcm)`

16 tháng 1 2023

đỉnh zợ :0