Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}b+c-a=x>0\\c+a-b=y>0\\a+b-c=z>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{z+x}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)
BĐT trở thành: \(\frac{\sqrt{y+z}}{\sqrt{2}x}+\frac{\sqrt{z+x}}{\sqrt{2}y}+\frac{\sqrt{x+y}}{\sqrt{2}z}\ge\frac{x+y+z}{\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8}}}\)
\(\Leftrightarrow\frac{\sqrt{y+z}}{x}+\frac{\sqrt{z+x}}{y}+\frac{\sqrt{x+y}}{z}\ge\frac{4\left(x+y+z\right)}{\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}\)
\(\Leftrightarrow\frac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}+\frac{\left(z+x\right)\sqrt{\left(y+z\right)\left(y+x\right)}}{y}+\frac{\left(x+y\right)\sqrt{\left(z+x\right)\left(z+y\right)}}{z}\ge4\left(x+y+z\right)\)
Ta có:
\(\frac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge\frac{\left(y+z\right)\left(x+\sqrt{yz}\right)}{x}=y+z+\frac{\left(y+z\right)\sqrt{yz}}{x}\ge y+z+\frac{2yz}{x}\)
Tương tự: \(\frac{\left(z+x\right)\sqrt{\left(y+z\right)\left(y+x\right)}}{y}\ge z+x+\frac{2zx}{y}\) ; \(\frac{\left(x+y\right)\sqrt{\left(z+x\right)\left(z+y\right)}}{z}\ge x+y+\frac{2xy}{z}\)
Cộng vế với vế:
\(VT\ge2\left(x+y+z\right)+2\left(\frac{yz}{x}+\frac{zx}{y}+\frac{xy}{z}\right)\ge2\left(x+y+z\right)+2\left(x+y+z\right)\)
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)
Bài 6 . Áp dụng BĐT Cauchy , ta có :
a2 + b2 ≥ 2ab ( a > 0 ; b > 0)
⇔ ( a + b)2 ≥ 4ab
⇔ \(\dfrac{\left(a+b\right)^2}{4}\)≥ ab
⇔ \(\dfrac{a+b}{4}\) ≥ \(\dfrac{ab}{a+b}\) ( 1 )
CMTT , ta cũng được : \(\dfrac{b+c}{4}\) ≥ \(\dfrac{bc}{b+c}\) ( 2) ; \(\dfrac{a+c}{4}\) ≥ \(\dfrac{ac}{a+c}\)( 3)
Cộng từng vế của ( 1 ; 2 ; 3 ) , Ta có :
\(\dfrac{a+b}{4}\) + \(\dfrac{b+c}{4}\) + \(\dfrac{a+c}{4}\) ≥ \(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)
⇔ \(\dfrac{a+b+c}{2}\) ≥ \(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)
Bài 4.
Áp dụng BĐT Cauchy cho các số dương a , b, c , ta có :
\(1+\dfrac{a}{b}\) ≥ \(2\sqrt{\dfrac{a}{b}}\) ( a > 0 ; b > 0) ( 1)
\(1+\dfrac{b}{c}\) ≥ \(2\sqrt{\dfrac{b}{c}}\) ( b > 0 ; c > 0) ( 2)
\(1+\dfrac{c}{a}\) ≥ \(2\sqrt{\dfrac{c}{a}}\) ( a > 0 ; c > 0) ( 3)
Nhân từng vế của ( 1 ; 2 ; 3) , ta được :
\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\) ≥ \(8\sqrt{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=8\)
Vì a,b,c là ba cạnh của tam giác nên \(\begin{cases}a+b>c\\b+c>a\\a+c>b\end{cases}\) \(\Rightarrow\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}\)
do đó các số \(\frac{a^2}{b+c-a},\frac{b^2}{a+c-b},\frac{c^2}{a+b-c}\) là các số dương.
Áp dụng bđt \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) được
\(\frac{a^2}{b+c-a}+\frac{b^2}{a+c-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)-\left(a+b+c\right)}=\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)