Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=x+y;b=y+z;c=z+x\)
Thì bài toán trở thành \(\frac{x+y}{2\left(2x+y\right)}+\frac{y+z}{2\left(2y+z\right)}+\frac{z+x}{2\left(2z+x\right)}\ge1\)
\(< =>3-\frac{x}{2\left(2x+y\right)}-\frac{y}{2\left(2y+z\right)}-\frac{z}{2\left(2z+x\right)}\ge1\)
\(< =>\frac{x}{2x+y}+\frac{y}{2y+z}+\frac{z}{2z+x}\le1\)
\(< =>\frac{2x}{2x+y}+\frac{2y}{2y+z}+\frac{2z}{2z+x}\le2\)
\(< =>3-\frac{y}{2x+y}-\frac{z}{2y+z}-\frac{x}{2z+x}\le2\)
\(< =>\frac{y}{2x+y}+\frac{z}{2y+z}+\frac{x}{2z+x}\ge1\)
Áp dụng Bất đẳng thức AM-GM dạng cộng mẫu thức ta có :
\(\frac{y}{2x+y}+\frac{z}{2y+z}+\frac{x}{2z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+x^2+y^2+z^2}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z\)hay \(a=b=c\)
Vậy bài toán đã được chứng minh xong
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
Ta có:\(\sqrt{4a+3b+2}\le\frac{9+4a+3b+2}{6}=\frac{4a+3b+11}{6}\)
\(\Rightarrow\sum\frac{a^2}{\sqrt{4a+3b+2}}\ge6.\sum\frac{a^2}{4a+3b+11}\)
Lại có:\(6.\sum\frac{a^2}{4a+3b+11}\ge6.\frac{\left(a+b+c\right)^2}{7\left(a+b+c\right)+33}=\frac{54}{54}=1\)
\(\Rightarrow\sum\frac{a^2}{\sqrt{4a+3b+2}}\ge1\)
"="<=>x=y=z=1
\(VT\ge\frac{\left(a+b+c\right)^2}{\sqrt{4a+3b+2}+\sqrt{4b+3c+2}+\sqrt{4c+3a+2}}\ge\frac{\left(a+b+c\right)^2}{\sqrt{\left(1+1+1\right)\left(4a+3b+2+4b+3c+2+4c+3a+2\right)}}\)
\(\Rightarrow VT\ge\frac{\left(a+b+c\right)^2}{\sqrt{3\left(7\left(a+b+c\right)+6\right)}}=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{a}{3a+b+c}=\frac{2a}{6a+2b+2c}=\frac{2a}{(a+b)+(a+c)+(a+b)+(a+c)+2a}\leq \frac{2a}{25}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{2a}\right)\)
\(=\frac{4}{25}(\frac{a}{a+b}+\frac{a}{a+c})+\frac{1}{25}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế ta có:
\(\sum \frac{a}{3a+b+c}\leq \frac{4}{25}(\frac{a+b}{a+b}+\frac{a+c}{a+c}+\frac{b+c}{b+c})+\frac{3}{25}=\frac{12}{25}+\frac{3}{25}=\frac{3}{5}\)
(đpcm)
Dấu "=" xảy ra khi $a=b=c$
\(VT=\sum\frac{a}{2a+a+b+c}\le\frac{1}{25}\sum\left(\frac{4a}{2a}+\frac{9a}{a+b+c}\right)=\frac{1}{25}\left(6+\frac{9\left(a+b+c\right)}{a+b+c}\right)=\frac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c\)
\(\frac{a}{3a+b+c}=\frac{a}{2a+a+b+c}\le\frac{1}{25}\left(\frac{4a}{2a}+\frac{9a}{a+b+c}\right)=\frac{2}{25}+\frac{9}{25}\left(\frac{a}{a+b+c}\right)\)
Tương tự: \(\frac{b}{a+3b+c}\le\frac{2}{25}+\frac{9}{25}\left(\frac{b}{a+b+c}\right)\) ; \(\frac{c}{a+b+3c}\le\frac{2}{25}+\frac{9}{25}\left(\frac{c}{a+b+c}\right)\)
Cộng vế với vế:
\(VT\le\frac{6}{25}+\frac{9}{25}\left(\frac{a+b+c}{a+b+c}\right)=\frac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c\)
Đặt:
x = a + c - b ; y = a + b - c ; z = b + c - a > 0 vì a; b ; c là độ dài 3 cạnh của 1 tam giác
=> x + y + z = a + b + c
=> a = \(\frac{x+y}{2}\); b = \(\frac{y+z}{2}\); c = \(\frac{x+z}{2}\)
=> 3a - b + c = 2 a + ( a - b + c ) = ( x + y ) + x = 2x + y
Tương tự: 3b - c + a = 2y + z ; 3c - a + b = x + 2z
Đưa về bài toán: Chứng minh:
\(\frac{x+y}{2\left(2x+y\right)}+\frac{y+z}{2\left(2y+z\right)}+\frac{z+x}{2\left(2z+x\right)}\ge1\)
<=> \(\frac{2x+2y}{2x+y}+\frac{2y+2z}{2y+z}+\frac{2z+2x}{2z+x}\ge4\)(1)
Ta có: VT = \(1+\frac{y}{2x+y}+1+\frac{z}{2y+z}+1+\frac{x}{2z+x}\)
\(=3+\left(\frac{y}{2x+y}+\frac{z}{2y+z}+\frac{x}{2z+x}\right)\)
\(=3+\left(\frac{y^2}{2xy+y^2}+\frac{z^2}{2yz+z^2}+\frac{x^2}{2zx+x^2}\right)\)
\(\ge3+\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}=3+1=4\)
=> (1) đúng
=> Bất đẳng thức ban đầu đúng
Dấu "=" xảy ra <=> x = y = z <=> a = b = c