K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

Ta có a 3   +   b 3   =   ( a   +   b ) ( a 2   –   a b   +   b 2 ) mà a = b + c nên

a 3   +   b 3   =   ( a   +   b ) ( a 2   –   a b   +   b 2 )     =   ( a   +   b ) [ ( b   +   c ) 2   –   ( b   +   c ) b   +   b 2 ]     =   ( a   +   b ) ( b 2   +   2 b c   +   c 2   –   b 2   –   b c   +   b 2 )     =   ( a   +   b ) ( b 2   +   b c   +   c 2 )

 

Tương tự ta có

a 3   +   c 3   =   ( a   +   c ) ( a 2   –   a c   +   c 2 )     =   ( a   +   c ) [ ( b   +   c ) 2   –   ( b   +   c ) c   +   c 2 ]     =   ( a   +   c ) ( b 2   +   2 b c   +   c 2   –   c 2   –   b c   +   c 2 )     =   ( a   +   c ) ( b 2   +   b c   +   c 2 )

 

Từ đó ta có

  a 3 + b 3 a 3 + c 3 = ( a + b ) ( b 2 + b c + c 2 ) ( a + c ) ( b 2 + b c + c 2 ) = a + b a + c

Đáp án cần chọn là: A

24 tháng 12 2021

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0

=> Hoặc a=-b hoặc b=-c hoặc c=-a

Ko mất tổng quát, g/s a=-b

a) Ta có: vì a=-b thay vào ta được:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)

\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)

=> đpcm

b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)

=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)

26 tháng 8 2021

tặng 100k cho ai giải dc bài này từ ngày 26/8/2021 -> 27/8/2021 

a,1/a+1/b+1/c=1/a+b+c

⇔(a+b)(b+c)(c+a)=0

⇔a = -b

⇔ b = -c

⇔ c = -a

⇒A=(a3+b3)(b3+c3)(c3+a3)=0

b,

vi vai tro cua a,b,c la nhu nhau nen ta gia su a+b=0 vay a+b+c=0

⇒ C = 3

Thay c=3 vao bieu thuc P ta co:

P=(a - 3 )2017 . (b - 3 )2017 . (3 - 3)2017 = 0

Vay P = 0

HT~

15 tháng 2 2021

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

15 tháng 2 2021

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

8 tháng 10 2019

a) \(a,b>0\Rightarrow a^3-b^3< a^3+b^3\)

Mà \(a^3+b^3=a-b\)

\(\Rightarrow a^3-b^3< a-b\)

\(\Rightarrow\frac{a^3-b^3}{a-b}< 1\)

\(\Leftrightarrow\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}< 1\)

\(\Leftrightarrow a^2+ab+b^2< 1\)

\(\Rightarrow a^2+b^2< 0\)(Vì a,b > 0)

b) Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath

7 tháng 10 2016

\(a+b+c=0\Leftrightarrow\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

Vì \(-3ab\left(a+b\right)\) luôn chia hết cho 3 và a,b,c nguyên nên không thể là số nguyên tố

12 tháng 10 2020

\(\text{Đ}k:a=b+c\)

\(min=2=1+1\)

\(\Rightarrow a=2,b=1,c=1\)

\(\frac{a^3+b^3}{a^3+c^3}=\frac{a+b}{a+c}\Rightarrow\frac{2^3+1^3}{2^3+1^3}=\frac{2+1}{2+1}\Leftrightarrow1=1\)

\(\Rightarrow\frac{a^3+b^3}{a^3+c^3}=\frac{a+b}{a+c}\)

12 tháng 10 2020

Xét VT ta có :

\(VT=\frac{a^3+b^3}{a^3+c^3}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}\)

\(=\frac{\left(a+b\right)\left[\left(b+c\right)^2-\left(b+c\right)b+b^2\right]}{\left(a+c\right)\left[\left(b+c\right)^2-\left(b+c\right)c+c^2\right]}\)

\(=\frac{\left(a+b\right)\left(b^2+2bc+c^2-b^2-bc+b^2\right)}{\left(a+c\right)\left(b^2+2bc+c^2-bc-c^2+c^2\right)}\)

\(=\frac{\left(a+b\right)\left(b^2+bc+c^2\right)}{\left(a+c\right)\left(b^2+bc+c^2\right)}\)

\(=\frac{a+b}{a+c}=VP\)

=> đpcm