K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2019

có cả mấy bất đẳng thức đó hả

bn viết công thức tổng quát ra cho mk vs

mk thanks

3 tháng 3 2020

Nè bạn :) 

Ta có : \(2ab+2ac\ge4a\sqrt{bc}\) (Cauchy_)

\(\Rightarrow a^2+2ab+2ac+4bc\ge a^2+4a\sqrt{bc}+4bc\)

\(\Rightarrow a^2+2ab+2ac+4bc\ge\left(a+2\sqrt{bc}\right)^2\)

\(\Rightarrow\sqrt{\left(a+2b\right)\left(a+2c\right)}\ge a+2\sqrt{bc}\)\(\left(1\right)\)

Tương tự : \(\sqrt{\left(b+2a\right)\left(b+2c\right)}\ge b+2\sqrt{ac}\)\(\left(2\right)\)

\(\sqrt{\left(c+2a\right)\left(c+2b\right)}\ge c+2\sqrt{ab}\)\(\left(3\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\)\(\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\)

\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{3}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Thay vào biểu thức M ta được M = \(\frac{\sqrt{3}}{3}\)

5 tháng 1 2018

b+c\(\ge\) \(2\sqrt{bc}\)

(a+2b)(a+2c) =\(a^2 +2ac+2ab+ 4bc= a^2+2a(b+c) +4bc\)

\(\ge\)\(a^2+4a.\sqrt{bc}+4bc=\left(a+2\sqrt{bc}\right)^2\)

\(=>\sqrt{\left(a+2b\right)\left(a+2c\right)}=a+2\sqrt{bc}\)

tương tự: \(\sqrt{\left(b+2a\right)\left(b+2c\right)}=b+2\sqrt{ac}\)

\(\sqrt{\left(c+2a\right)\left(c+2b\right)}=c+2\sqrt{ab}\)

\(=>\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2b\right)\left(c+2a\right)}\ge a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=3\)

khi a=b=c ( a,b,c nguyên dương nên a+b+c>0)

=> \(3\sqrt{a}=\sqrt{3}=>\sqrt{a}=\sqrt{b}=\sqrt{c}=\dfrac{\sqrt{3}}{3}\)

Thay vào M=\(\dfrac{1}{3}\)

7 tháng 1 2018

\(\sqrt{a^2+2ac+2ab+4bc}\) + \(\sqrt{b^2+2bc+2ab+4ac}\) + \(\sqrt{c^2+2bc+2ac+4ab}\) =3

Haizzz mọi người ra chưa?

11 tháng 12 2019

bạn ơi đến thế thì làm thế nào

21 tháng 12 2018

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+2c\right)}=\frac{\sqrt{3a\left(b+2c\right)}}{\sqrt{3}}\le\frac{\frac{3a+b+2c}{2}}{\sqrt{3}}=\frac{3a+b+2c}{2\sqrt{3}}\)

Tương tự ta cũng có:\(\sqrt{b\left(c+2a\right)}\le\frac{3b+c+2a}{2\sqrt{3}}\)

               \(\sqrt{c\left(a+2b\right)}\le\frac{3c+a+2b}{2\sqrt{3}}\)

Cộng theo vế các BĐT lại ta được:

\(VT\le\frac{3a+b+2c}{2\sqrt{3}}+\frac{3b+c+2a}{2\sqrt{3}}+\frac{3c+a+2b}{2\sqrt{3}}=\frac{6a+6b+6c}{2\sqrt{3}}=\frac{6.4}{2\sqrt{3}}=4\sqrt{3}\)

21 tháng 12 2018

Dấu "=" xảy ra khi \(a=b=c=\frac{4}{3}\)

5 tháng 10 2017

Câu b tương tự

5 tháng 10 2017

a/ \(\sqrt[5]{2a+b}+\sqrt[5]{2b+c}+\sqrt[5]{2c+a}\)

\(=\frac{1}{\sqrt[5]{3^4}}\left(\sqrt[5]{3^4}.\sqrt[5]{2a+b}+\sqrt[5]{3^4}.\sqrt[5]{2b+c}+\sqrt[5]{3^4}.\sqrt[5]{2c+a}\right)\)

\(\le\frac{1}{\sqrt[5]{3^4}}\left(\frac{3+3+3+3+2a+b}{5}+\frac{3+3+3+3+2b+c}{5}+\frac{3+3+3+3+2c+a}{5}\right)\)

\(=\frac{1}{\sqrt[5]{3^4}}\left(\frac{36}{5}+\frac{3\left(a+b+c\right)}{5}\right)\)

\(=\frac{1}{\sqrt[5]{3^4}}.9=3\sqrt[5]{3}\)