Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b+c\(\ge\) \(2\sqrt{bc}\)
(a+2b)(a+2c) =\(a^2 +2ac+2ab+ 4bc= a^2+2a(b+c) +4bc\)
\(\ge\)\(a^2+4a.\sqrt{bc}+4bc=\left(a+2\sqrt{bc}\right)^2\)
\(=>\sqrt{\left(a+2b\right)\left(a+2c\right)}=a+2\sqrt{bc}\)
tương tự: \(\sqrt{\left(b+2a\right)\left(b+2c\right)}=b+2\sqrt{ac}\)
\(\sqrt{\left(c+2a\right)\left(c+2b\right)}=c+2\sqrt{ab}\)
\(=>\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2b\right)\left(c+2a\right)}\ge a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=3\)
khi a=b=c ( a,b,c nguyên dương nên a+b+c>0)
=> \(3\sqrt{a}=\sqrt{3}=>\sqrt{a}=\sqrt{b}=\sqrt{c}=\dfrac{\sqrt{3}}{3}\)
Thay vào M=\(\dfrac{1}{3}\)
có cả mấy bất đẳng thức đó hả
bn viết công thức tổng quát ra cho mk vs
mk thanks
\(\sqrt{a^2+2ac+2ab+4bc}\) + \(\sqrt{b^2+2bc+2ab+4ac}\) + \(\sqrt{c^2+2bc+2ac+4ab}\) =3
Haizzz mọi người ra chưa?
Nè bạn :)
Ta có : \(2ab+2ac\ge4a\sqrt{bc}\) (Cauchy_)
\(\Rightarrow a^2+2ab+2ac+4bc\ge a^2+4a\sqrt{bc}+4bc\)
\(\Rightarrow a^2+2ab+2ac+4bc\ge\left(a+2\sqrt{bc}\right)^2\)
\(\Rightarrow\sqrt{\left(a+2b\right)\left(a+2c\right)}\ge a+2\sqrt{bc}\)\(\left(1\right)\)
Tương tự : \(\sqrt{\left(b+2a\right)\left(b+2c\right)}\ge b+2\sqrt{ac}\)\(\left(2\right)\)
\(\sqrt{\left(c+2a\right)\left(c+2b\right)}\ge c+2\sqrt{ab}\)\(\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\)\(\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\)
\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{3}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Thay vào biểu thức M ta được M = \(\frac{\sqrt{3}}{3}\)
Câu b tương tự
a/ \(\sqrt[5]{2a+b}+\sqrt[5]{2b+c}+\sqrt[5]{2c+a}\)
\(=\frac{1}{\sqrt[5]{3^4}}\left(\sqrt[5]{3^4}.\sqrt[5]{2a+b}+\sqrt[5]{3^4}.\sqrt[5]{2b+c}+\sqrt[5]{3^4}.\sqrt[5]{2c+a}\right)\)
\(\le\frac{1}{\sqrt[5]{3^4}}\left(\frac{3+3+3+3+2a+b}{5}+\frac{3+3+3+3+2b+c}{5}+\frac{3+3+3+3+2c+a}{5}\right)\)
\(=\frac{1}{\sqrt[5]{3^4}}\left(\frac{36}{5}+\frac{3\left(a+b+c\right)}{5}\right)\)
\(=\frac{1}{\sqrt[5]{3^4}}.9=3\sqrt[5]{3}\)