K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

giả sử a\(\le\)b \(\le\)c.

khi đó \(\frac{a}{b+c}\le\frac{b}{c+a}\le\frac{c}{a+b}\)

áp dụng BĐT Trê bư sép ta có:

\(\left(a^2+b^2+c^2\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\le3\left(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\right)=3VT\)

lại có a2 + b2 + c2 \(\ge\) \(\frac{\left(a+b+c\right)^2}{3}\) nên:

3VT \(\ge\frac{\left(a+b+c\right)^2}{3}\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

hay VT \(\ge\left(\frac{a+b+c}{3}\right)^2\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\). đpcm

NV
12 tháng 6 2020

\(\Leftrightarrow\frac{\left(b+c\right)^2+a^2-2a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{\left(a+c\right)^2+b^2-2b\left(a+c\right)}{\left(a+c\right)^2+b^2}+\frac{\left(b+a\right)^2+c^2-2c\left(a+b\right)}{\left(a+b\right)^2+c^2}\ge\frac{3}{5}\)

\(\Leftrightarrow3-2\left(\frac{a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{b\left(a+c\right)}{\left(a+c\right)^2+b^2}+\frac{c\left(a+b\right)}{\left(a+b\right)^2+c^2}\right)\ge\frac{3}{5}\)

\(\Leftrightarrow\frac{a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{b\left(a+c\right)}{\left(a+c\right)^2+b^2}+\frac{c\left(a+b\right)}{\left(a+b\right)^2+c^2}\le\frac{6}{5}\)

Chuẩn hóa \(a+b+c=3\) (hay đặt \(x=\frac{3a}{a+b+c};y=\frac{3b}{a+b+c};z=\frac{3c}{a+b+c}\))

BĐT cần chứng minh trở thành:

\(\frac{a\left(3-a\right)}{\left(3-a\right)^2+a^2}+\frac{b\left(3-b\right)}{\left(3-b\right)^2+b^2}+\frac{c\left(3-c\right)}{\left(3-c\right)^2+c^2}\le\frac{6}{5}\)

Ta có đánh giá: \(\frac{a\left(3-a\right)}{\left(3-a\right)^2+a^2}\le\frac{9a+1}{25}\) ; \(\forall a\in\left(0;3\right)\)

\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)\ge0\) (luôn đúng)

Tương tự: \(\frac{b\left(3-b\right)}{\left(3-b\right)^2+b^2}\le\frac{9b+1}{25};\frac{c\left(3-c\right)}{\left(3-c\right)^2+c^2}\le\frac{9c+1}{25}\)

Cộng vế với vế: \(VT\le\frac{9\left(a+b+c\right)+3}{25}=\frac{30}{25}=\frac{6}{5}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

28 tháng 8 2019

\(sigma\frac{a^2+b^2}{ab\left(a+b\right)^3}\ge sigma\frac{\frac{\left(a+b\right)^2}{2}}{\left(a+b\right)^2\left(a^3+b^3\right)}=sigma\frac{1}{2\left(a^3+b^3\right)}\ge\frac{9}{4\left(a^3+b^3+c^3\right)}=\frac{9}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt[3]{3}}\)

27 tháng 2 2017

\(abc=1\Rightarrow\left(abc\right)^2=a^2b^2c^2=1\Rightarrow a^2=\frac{1}{b^2c^2}\Rightarrow\frac{1}{a^3\left(b+c\right)}=\frac{b^2c^2}{a\left(b+c\right)}=\frac{\left(bc\right)^2}{ab+ac}\)

Chứng minh tương tự ta có:  \(\frac{1}{b^3\left(c+a\right)}=\frac{\left(ca\right)^2}{bc+ba};\frac{1}{c^3\left(a+b\right)}=\frac{\left(ab\right)^2}{ca+cb}\)

=> \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}=\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\)

Áp dụng bđt Cauchy-Schwarz dạng Engel: \(\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\ge\frac{\left(ab+bc+ca\right)^2}{bc+ca+ab+ca+ab+bc}=\frac{ab+bc+ca}{2}\)

Tiếp tục áp dụng bđt Cauchy với 3 số dương ta được: \(\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3\sqrt[3]{1}}{2}=\frac{3}{2}\)

=> \(\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\ge\frac{ab+bc+ca}{2}\ge\frac{3}{2}\)

27 tháng 2 2017

Dấu "=" xảy ra khi a=b=c=1

NV
22 tháng 2 2020

Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)

\(VT=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{z^3xy}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{3}{2}\sqrt[3]{xyz}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

28 tháng 1 2020

Ta có: \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\)

\(=\left(a^2+b^2+c^2\right)+\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+6\)

\(\ge\frac{1}{3}\left(a+b+c\right)^2+\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+6\)

\(\ge\frac{1}{3}\left(a+b+c\right)^2+\frac{1}{3}\left(\frac{9}{a+b+c}\right)^2+6\)

\(=\frac{100}{3}\left(đpcm\right)\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

NV
4 tháng 6 2020

Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)

Đặt vế trái là P

Ta có: \(P=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

29 tháng 1 2019

Mẫu bài này khó khử ~v

Ta có: \(\frac{1}{a^3\left(b+c\right)}+\frac{a^3\left(b+c\right)}{4}\ge2\sqrt{\frac{1}{a^3\left(b+c\right)}.\frac{a^3\left(b+c\right)}{4}}=2.\frac{1}{2}=1\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế,ta có:

\(VT+\frac{\left[a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\right]}{4}\ge3\) (*)

Ta sẽ c/m: \(a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\ge6\) (**)

Thật vậy,áp dụng BĐT Cô si,ta có: \(VT_{\left(^∗^∗\right)}\ge2a^2.a\sqrt{bc}+2b^2.b\sqrt{ac}+2c^2.c\sqrt{ab}\) 

\(=2a^2\sqrt{abc.a}+2b^2\sqrt{abc.b}+2c^2\sqrt{abc.c}\)

\(=2a^2\sqrt{a}+2b^2\sqrt{b}+2b^2\sqrt{c}\) (***)

Đặt \(\sqrt{a}=t;\sqrt{b}=u;\sqrt{c}=v\).và \(t.u.v=1\)

(***) trở thành: \(2t^5+2u^5+2v^5=2\left(t^5+u^5+v^5\right)\)

Ta có: \(t^5+u^5+v^5+1+1\ge5\sqrt[5]{t^5u^5v^5.1.1}=5\)

Suy ra \(t^5+u^5+v^5\ge5-2=3\)

Suy ra \(2\left(t^5+u^5+v^5\right)\ge2.3=6\) (****)

Kết hợp (**) ; (***) và (****) suy ra \(a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\ge6\)

Thay vào (1) suy ra \(VT+\frac{\left[a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\right]}{4}\ge VT+\frac{6}{4}\ge3\)

Suy ra \(VT\ge\frac{3}{2}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c = 1

Bài dài quá,có gì sai sót mong bạn thông cảm.Vì khi bài dài,mình làm có thể sẽ bị ngược dấu. :v

26 tháng 5 2019

Chết mọe,hình như em làm sai rồi thì phải :(,Sr ạ!