Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = abc + bca + cab = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 111c = 111(a + b + c) =3 x 37 x (a + b + c)
Để A là số chính phương
=> a + b + c chia hết cho 37 thõa mãn 3 x 37 x (a + b + c) chia hết cho 372
Mà \(0\le a+b+c\le9+9+9=27\)
=> a + b + c = 0 => a = b = c = 0
=> Vô lí vì a;b;c là các số hàng trăm
=> Không có a;b;c thõa mãn
Vậy abc + bca + cab không phải là số chính phương (đpcm)
a2+b2+c2=4−abc≤4
Smax=4 khi 1 trong 3 số bằng 0
4=abc+a2+b2+c2≥abc+33√(abc)2
Đặt 3√abc=x>0⇒x3+3x2−4≤0
⇔(x−1)(x+2)2≤0⇒x≤1
⇒abc≤1⇒S=4−abc≥3
Dấu "=" xảy ra khi a=b=c=1
Min là hoán vị a=b=0 c=2 ; a=c=0 b=2 ; b=c=0 a=2 mà :vv
mà thôi Min làm đr còn max
TKS
Lời giải:
Gọi số cần tìm có dạng $\overline{abc}$ với $a,b,c$ là số tự nhiên có 1 chữ số, $a>0$. Theo bài ra ta có:
$2\overline{abc}=\overline{bca}+\overline{cab}$
$2(100a+10b+c)=100b+10c+a+100c+10a+b$
$200a+20b+20c=101b+110c+11a$
$189a=81b+90c$
$21a=9b+10c$
$10c=21a-9b\vdots 3\Rightarrow c\vdots 3$
$\Rightarrow c$ có thể là $0,3,6,9$
-----------------------------------------
Nếu $c=0$ thì $21a=9b\Rightarrow 7a=3b$
$\Rightarrow 3b\vdots 7\Rightarrow b\vdots 7\Rightarrow b=0$ hoặc $b=7$.
$b=0$ thì $a=0$ (vô lý - loại)
$b=7$ thì $a=3$. Số cần tìm là $370$
-------------------------------------------
Nếu $c=3$ thì $21a=9b+30$
$\Rightarrow 7a=3b+10< 3.10+10=40$
$\Rightarrow a\leq 5$
Mà $7a=3b+10> 10\Rightarrow a> 1$
Thử $a=2,3,4,5$ thấy $a=4; b=6$ thỏa mãn. Số cần tìm $463$
-------------------------------------------
Nếu $c=6$ thì $21a=9b+60$
$\Rightarrow 7a=3b+20\geq 20\Rightarrow a>2$
$7a=3b+20< 3.10+20=50\Rightarrow a\leq 7$
Thử $a=3,4,5,6,7$ thì $a=5; b=5$. Số cần tìm $556$
-------------------------------------------
Nếu $c=9$ thì $21a=9b+90$
$\Rightarrow 7a=3b+30\vdots 3\Rightarrow a\vdots 3$
$\Rightarrow a=3,6,9$. Thử thì $a=6; b=4$
Số cần tìm $649$
\(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\)
\(\Leftrightarrow a+b+c-3\sqrt[3]{abc}\ge0\)
\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}\right)^3+c-3\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)-3\sqrt[3]{abc}\ge0\)
\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}-\sqrt[3]{ab}-\sqrt[3]{bc}-\sqrt[3]{ac}\right)\ge0\)
Mà ta có \(\hept{\begin{cases}\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\ge0\\\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}-\sqrt[3]{ab}-\sqrt[3]{bc}-\sqrt[3]{ac}\right)\ge0\end{cases}}\)nên cái BĐT là đúng
- Ta có BĐT giữa trung bình nhân và trung bình cộng : \(\frac{a+b}{2}\ge\sqrt{ab}\) ; \(\frac{c+d}{2}\ge\sqrt{cd}\)
- Trước hết ta chứng minh BĐT \(\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\)
Áp dụng BĐT trên , ta được : \(\frac{a+b+c+d}{2}=\frac{a+b}{2}+\frac{c+d}{2}\ge2\sqrt{\frac{\left(a+b\right)}{2}.\frac{\left(c+d\right)}{2}}\ge2\sqrt{\sqrt{ab}.\sqrt{cd}}=2\sqrt[4]{abcd}\)
\(\Leftrightarrow\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\) (*)
- Đặt \(d=\frac{a+b+c}{3}\) thì \(a+b+c=3d\) (**)
Từ (*) và (**) ta có : \(\frac{3d+d}{4}\ge\sqrt[4]{abcd}\Leftrightarrow d\ge\sqrt[4]{abcd}\Leftrightarrow d^4\ge abcd\Leftrightarrow d^3\ge abc\Leftrightarrow d\ge\sqrt[3]{abc}\)
hay \(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\) (đpcm)
Bạn tự xét dấu đẳng thức nhé!
Số thần kì là cái
GÌ THẾ MK CHƯA AHOK
NGAO
Ta có:
bca=abc
cab=abc
=>abc+bca+cab=abc+abc+abc=3abc
Có lẽ bn muốn c/m vậy à
hok tốt