K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

Số thần kì là cái

GÌ THẾ MK CHƯA AHOK

NGAO

Ta có:

bca=abc

cab=abc

=>abc+bca+cab=abc+abc+abc=3abc

Có lẽ bn muốn c/m vậy à

hok tốt

15 tháng 12 2015

Đặt A = abc + bca + cab = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b

= 111a + 111b + 111c = 111(a + b + c)  =3 x 37 x (a + b + c)

Để A là số chính phương

=> a + b  + c chia hết cho  37 thõa mãn 3 x 37 x (a + b + c) chia hết cho 372

Mà \(0\le a+b+c\le9+9+9=27\)

=> a + b + c = 0 => a = b = c = 0

=> Vô lí vì a;b;c là các số hàng trăm 

=> Không có a;b;c thõa mãn 

Vậy abc + bca + cab không phải là số chính phương (đpcm) 

15 tháng 12 2015

http://olm.vn/hoi-dap/question/96113.html

Bạn vào đây tham khảo nhé

15 tháng 4 2021

Giống bài tập của Nguyễn Thị Lộc

23 tháng 5 2022

a2+b2+c2=4−abc≤4

Smax=4 khi 1 trong 3 số bằng 0

4=abc+a2+b2+c2≥abc+33√(abc)2

Đặt 3√abc=x>0⇒x3+3x2−4≤0

⇔(x−1)(x+2)2≤0⇒x≤1

⇒abc≤1⇒S=4−abc≥3

Dấu "=" xảy ra khi a=b=c=1

23 tháng 5 2022

Min là hoán vị a=b=0 c=2 ; a=c=0 b=2 ; b=c=0 a=2 mà :vv

mà thôi Min làm đr còn max 

TKS

AH
Akai Haruma
Giáo viên
9 tháng 6

Lời giải:

Gọi số cần tìm có dạng $\overline{abc}$ với $a,b,c$ là số tự nhiên có 1 chữ số, $a>0$. Theo bài ra ta có:

$2\overline{abc}=\overline{bca}+\overline{cab}$

$2(100a+10b+c)=100b+10c+a+100c+10a+b$

$200a+20b+20c=101b+110c+11a$

$189a=81b+90c$

$21a=9b+10c$

$10c=21a-9b\vdots 3\Rightarrow c\vdots 3$

$\Rightarrow c$ có thể là $0,3,6,9$

-----------------------------------------

Nếu $c=0$ thì $21a=9b\Rightarrow 7a=3b$

$\Rightarrow 3b\vdots 7\Rightarrow b\vdots 7\Rightarrow b=0$ hoặc $b=7$.

$b=0$ thì $a=0$ (vô lý - loại) 

$b=7$ thì $a=3$. Số cần tìm là $370$

-------------------------------------------

Nếu $c=3$ thì $21a=9b+30$

$\Rightarrow 7a=3b+10< 3.10+10=40$

$\Rightarrow a\leq 5$

Mà $7a=3b+10> 10\Rightarrow a> 1$

Thử $a=2,3,4,5$ thấy $a=4; b=6$ thỏa mãn. Số cần tìm $463$

-------------------------------------------

Nếu $c=6$ thì $21a=9b+60$

$\Rightarrow 7a=3b+20\geq 20\Rightarrow a>2$

$7a=3b+20< 3.10+20=50\Rightarrow a\leq 7$

Thử $a=3,4,5,6,7$ thì $a=5; b=5$. Số cần tìm $556$

-------------------------------------------

Nếu $c=9$ thì $21a=9b+90$

$\Rightarrow 7a=3b+30\vdots 3\Rightarrow a\vdots 3$

$\Rightarrow a=3,6,9$. Thử thì $a=6; b=4$

Số cần tìm $649$

16 tháng 11 2016

\(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\)

\(\Leftrightarrow a+b+c-3\sqrt[3]{abc}\ge0\)

\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}\right)^3+c-3\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)-3\sqrt[3]{abc}\ge0\)

\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}-\sqrt[3]{ab}-\sqrt[3]{bc}-\sqrt[3]{ac}\right)\ge0\)

Mà ta có \(\hept{\begin{cases}\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\ge0\\\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}-\sqrt[3]{ab}-\sqrt[3]{bc}-\sqrt[3]{ac}\right)\ge0\end{cases}}\)nên cái BĐT là đúng

16 tháng 11 2016
  • Ta có BĐT giữa trung bình nhân và trung bình cộng : \(\frac{a+b}{2}\ge\sqrt{ab}\) ; \(\frac{c+d}{2}\ge\sqrt{cd}\)
  • Trước hết ta chứng minh BĐT \(\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\)

Áp dụng BĐT trên , ta được :  \(\frac{a+b+c+d}{2}=\frac{a+b}{2}+\frac{c+d}{2}\ge2\sqrt{\frac{\left(a+b\right)}{2}.\frac{\left(c+d\right)}{2}}\ge2\sqrt{\sqrt{ab}.\sqrt{cd}}=2\sqrt[4]{abcd}\)

\(\Leftrightarrow\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\) (*)

  • Đặt \(d=\frac{a+b+c}{3}\) thì \(a+b+c=3d\) (**)

Từ (*) và (**) ta có : \(\frac{3d+d}{4}\ge\sqrt[4]{abcd}\Leftrightarrow d\ge\sqrt[4]{abcd}\Leftrightarrow d^4\ge abcd\Leftrightarrow d^3\ge abc\Leftrightarrow d\ge\sqrt[3]{abc}\) 

hay \(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\) (đpcm)

Bạn tự xét dấu đẳng thức nhé!