K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 4 2019

\(c^2-6c+9+d^2-8d+16=0\Leftrightarrow\left(c-3\right)^2+\left(d-4\right)^2=0\Rightarrow\left\{{}\begin{matrix}c=3\\d=4\end{matrix}\right.\)

\(\Rightarrow P=25-\left(3a+4b\right)\)

Mặt khác \(\left(3a+4b\right)^2\le\left(3^2+4^2\right)\left(a^2+b^2\right)=50\)

\(\Rightarrow-5\sqrt{2}\le3a+4b\le5\sqrt{2}\)

\(\Rightarrow P\le25+5\sqrt{2}\)

\(\Rightarrow P_{max}=25+5\sqrt{2}\) khi \(\left\{{}\begin{matrix}a=\frac{-3\sqrt{2}}{5}\\b=\frac{-4\sqrt{2}}{5}\end{matrix}\right.\)

NV
25 tháng 6 2020

\(c^2+d^2+25=6c+8d\)

\(\Leftrightarrow\left(c^2-6c+9\right)+\left(d^2-8d+16\right)=0\)

\(\Leftrightarrow\left(c-3\right)^2+\left(d-4\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}c-3=0\\d-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}c=3\\d=4\end{matrix}\right.\)

\(\Rightarrow P=25-3a-4b=25-\left(3a+4b\right)=25-Q\)

Xét \(Q=3a+4b\Rightarrow Q^2=\left(3a+4b\right)^2\le\left(3^2+4^2\right)\left(a^2+b^2\right)=25.2=50\)

\(\Rightarrow Q^2\le50\Rightarrow-5\sqrt{2}\le Q\le5\sqrt{2}\Rightarrow-Q\le5\sqrt{2}\)

\(\Rightarrow P\le25+5\sqrt{2}\)

\(P_{max}=25+5\sqrt{2}\) khi \(\left\{{}\begin{matrix}a^2+b^2=2\\\frac{a}{3}=\frac{b}{4}\\3a+4b=-5\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{3\sqrt{2}}{5}\\b=-\frac{4\sqrt{2}}{5}\end{matrix}\right.\)

8 tháng 4 2016

Ta có \(x^3+y^3\ge\frac{1}{4}\left(x+y\right)^3;xy\le\left(\frac{x+y}{2}\right)^2\) với mọi \(x,y>0\)

Kết hợp với giả thiết suy ra :

\(\frac{1}{4}\left(a+b+c\right)^3\le\left(a+b\right)^3+c^3\le4\left(a^3+b^3\right)+c^3\le2\left(a+b+c\right)\left(\frac{\left(a+b+c\right)^2}{4}-2\right)\)

\(\Rightarrow a+b+c\ge4\)

Khi đó sử dựng bất đẳng thức AM-GM ta có :

\(\frac{2a^2}{3a^2+b^2+2a\left(c+2\right)}=\frac{a}{a+c+2+\left(\frac{b^2}{2a}+\frac{a}{2}\right)}\le\frac{a}{a+c+2+2\sqrt{\frac{b^2}{2a}.\frac{a}{2}}}=\frac{a}{a+b+c+2}\)

Và \(\left(a+b\right)^2+c^2\ge\frac{1}{2}\left(a+b+c\right)^2\)

Suy ra \(P\le\frac{a+b+c}{a+b+c+2}-\frac{\left(a+b+c\right)^2}{32}\)

Đặt \(t=a+b+c\ge4,P\le f\left(t\right)=\frac{t}{t+2}-\frac{t^2}{32}\)

Ta có : \(f'\left(t\right)=\frac{2}{\left(t+2\right)^2}-\frac{t}{16}=\frac{32-t\left(t+2\right)^2}{16\left(t+2\right)^2}<0\) với mọi \(t\ge4\)

Suy ra hàm số \(f'\left(t\right)\) nghịch biến trên \(\left(4;+\infty\right)\). Do đó \(P\le f\left(t\right)\le f\left(4\right)=\frac{1}{6}\)

Dấu = xảy ra khi và chỉ khi \(\begin{cases}a=b;a+b=c\\a+b+c=4\end{cases}\) \(\Leftrightarrow a=b=1,c=2\)

Vậy giá trị lớn nhất của P bằng \(\frac{1}{6}\)

NV
17 tháng 1 2021

Dự đoán điểm rơi xảy ra tại \(\left(a;b;c\right)=\left(3;2;4\right)\)

Đơn giản là kiên nhẫn tính toán và tách biểu thức:

\(D=13\left(\dfrac{a}{18}+\dfrac{c}{24}\right)+13\left(\dfrac{b}{24}+\dfrac{c}{48}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{2}{ab}\right)+\left(\dfrac{a}{18}+\dfrac{c}{24}+\dfrac{2}{ac}\right)+\left(\dfrac{b}{8}+\dfrac{c}{16}+\dfrac{2}{bc}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{c}{12}+\dfrac{8}{abc}\right)\)

Sau đó Cô-si cho từng ngoặc là được

13 tháng 1 2022

Có cách nào làm ngắn hơn ko ạ

25 tháng 2 2022

Ta có : \(9=a^2+a^2+b^2+a^2+b^2+bc+bc+c^2+c^2\ge9\sqrt[9]{a^6\cdot b^6\cdot c^6}=9\sqrt[3]{a^2\cdot b^2\cdot c^2}\Rightarrow abc\le1\) Áp dụng bđt Cô-si vào các số dương : \(a^2+\dfrac{1}{b^2}+\dfrac{1}{b^2}+\dfrac{1}{b^2}\ge4\sqrt[4]{\dfrac{a^2}{b^6}}=4\sqrt{\dfrac{a}{b^3}}\Rightarrow\sqrt{a^2+\dfrac{3}{b^2}}\ge2\cdot\sqrt[4]{\dfrac{a}{b^3}}\)  

CM tương tự ta được: \(\sqrt{b^2+\dfrac{3}{c^2}}\ge2\sqrt[4]{\dfrac{b}{c^3}};\sqrt{c^2+\dfrac{3}{a^2}}\ge2\sqrt[4]{\dfrac{c}{a^3}}\Rightarrow P\ge2\cdot\left(\sqrt[4]{\dfrac{a}{b^3}}+\sqrt[4]{\dfrac{b}{c^3}}+\sqrt[4]{\dfrac{c}{a^3}}\right)\ge2\cdot3\cdot\sqrt[12]{\dfrac{a}{b^3}\cdot\dfrac{b}{c^3}\cdot\dfrac{c}{a^3}}=6\sqrt[12]{\dfrac{1}{\left(abc\right)^2}}=6\) Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)

25 tháng 2 2022

Em cám ơn thầy đã giúp đỡ ạ!

 

9 tháng 4 2021

a2 + b2 = 4a + 6b - 9 

⇔ (a - 2)2 + (b - 3)2 = 4

Đây là phương trình của đường tròn (C) có tâm là I (2;3) và bán kính bằng 2

(d) : 3c + 4d - 1 = là phương trình đường thẳng

Gọi A (a;b) và B (b; d) ⇒ AB = \(\sqrt{\left(a-c\right)^2+\left(b-d\right)^2}\)

Với A nằm trên đường tròn (C) và B nằm trên d

Vẽ đường tròn (C) : (x - 2)2 + (y - 3)2 = 4 và đường thẳng 
3x + 4y - 1 = 0 trên cùng một hệ trục tọa độ ta thấy chúng không có điểm chung

Cần tìm tọa độ của A và B để AB đạt Min

Từ I kẻ đường thẳng vuông góc với (d) tại N, cắt đường tròn (C) tại M, ta tìm được tọa độ MN

Do MN là khoảng cách ngắn nhất từ một điểm trên (C) đến (d)

Dấu "=" xảy ra khi A trùng M, B trùng N => a,b,c,d

Đoạn này lười quá nên tự làm nha