K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

Với a > 0, b > 0, c > 0, d > 0 ta có:

a < b ⇒ ac < bc (1)

c < d ⇒ bc < bd (2)

Từ (1) và (2) suy ra: ac < bd.

22 tháng 3 2019

Nhân c vào 2 vế BĐT a<b, ta được:

ac<bc (1)

Nhân b vào 2 vế BĐT c<d, ta được:

bc<bd (2)

Từ (1) và (2) suy ra:

ac<bd (tính chất bắc cầu)

7 tháng 2 2018

Gọi \(ƯCLN\left(a,b\right)=k\)

\(\Rightarrow\hept{\begin{cases}a=a1.k\\b=b1.k\end{cases}}\)          \(ƯCLN\left(a1;b1\right)=1\)

Vì \(ac=bd\Rightarrow a1.k.c=b1.k.d\Rightarrow a1.c=b1.d\left(1\right)\)\(\Rightarrow a1.c⋮b1\)mà \(ƯCLN\left(a1;b1\right)=1\)\(\Rightarrow c⋮b1\Rightarrow c=b1.m\left(2\right)\)

Thay (2) vào (1).Ta có:

\(b1.m.a1=b1.d\Rightarrow a1.m=d\)

Vậy \(a+b+c+d=b1.m+a1.m+k.a1+k.b1\)

\(=\left(a1+b1\right)\left(k+m\right)\)

Mà a1; b1; k; m là số nguyên dương nên \(\left(a1+b1\right)\left(k+m\right)\)là hợp số. Vậy a+b+c+d là hợp số.

8 tháng 2 2018

Ta có:

\(a=\frac{bd}{c};b=\frac{ac}{d};c=\frac{bd}{a};d=\frac{ac}{b}\)

\(\Rightarrow\frac{bd}{c}+\frac{bd}{a}+\frac{ac}{b}+\frac{ac}{d}\)

\(=bd\left(\frac{1}{a}+\frac{1}{c}\right)+ac\left(\frac{1}{b}+\frac{1}{d}\right)\)

\(=ac\left(\frac{1}{a}+\frac{1}{c}\right)+ac\left(\frac{1}{b}+\frac{1}{d}\right)\)( Vì ac = bd )

\(=ac\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\)

Khi đó: \(ac\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\)chia hết cho a,c,ac,1

=> a + b + c + d là hợp số

Vậy a + b + c + d là hợp số.

7 tháng 1 2021

\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)

\(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)

\(\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)

\(\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

<=>b(c+d)(d+a)+d(a+b)(b+c)=0 (vì c≠a)

<=>abc-acd+bd2-b2d=0

<=> (b-d)(ac-bd)=0 <=> ac - bd =0 (vì b≠d) <=> ac = bd

Vậy abcd =(ac)(bd)=(ac)2

1 tháng 11 2019

Vì a+b+c+d=0\(\Rightarrow a+b+c=-d\Rightarrow ac+bc+c^2=-cd\)

\(\Rightarrow\)\(ab-cd=ab+ac+bc+c^2=\left(a+c\right)\left(b+c\right)\)

Tương tự ta có \(bc-ad=\left(a+b\right)\left(a+c\right)\)

                        \(ac-bd=\left(a+b\right)\left(b+c\right)\)

Từ 3 điều trên ta suy ra đpcm

15 tháng 2 2021

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

15 tháng 2 2021

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

29 tháng 8 2018

Ta có :  \(ac+bd\ge bc+ad\)

\(\Leftrightarrow ac+bd-bc-ad\ge0\)

\(\Leftrightarrow\left(ac-bc\right)-\left(ad-bd\right)\ge0\)

\(\Leftrightarrow c\left(a-b\right)-d\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(c-d\right)\ge0\)( luôn đúng ) ( do a,b,c,d dương và \(a\ge b\)\(c\ge d\))

Vậy ....

2 tháng 8 2023

Điều kiện đã cho có thể được viết lại thành \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)

hay \(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)

\(\Leftrightarrow\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)

\(\Leftrightarrow\dfrac{b^2+bc-ab-b^2}{\left(a+b\right)\left(b+c\right)}+\dfrac{d^2+da-cd-d^2}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\left(c-a\right)\left[\dfrac{b}{\left(a+b\right)\left(b+c\right)}-\dfrac{d}{\left(c+d\right)\left(d+a\right)}\right]=0\)

\(\Leftrightarrow\dfrac{b}{\left(a+b\right)\left(b+c\right)}=\dfrac{d}{\left(c+d\right)\left(d+a\right)}\) (do \(c\ne a\))

\(\Leftrightarrow b\left(cd+ca+d^2+da\right)=d\left(ab+ac+b^2+bc\right)\)

\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)

\(\Leftrightarrow abc+bd^2-acd-b^2d=0\)

\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)

\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)

\(\Leftrightarrow ac=bd\) (do \(b\ne d\))

 Do đó \(A=abcd=ac.ac=\left(ac\right)^2\), mà \(a,c\inℕ^∗\) nên A là SCP (đpcm)

 

 

DD
16 tháng 7 2021

Câu hỏi của lep. - Toán lớp 8 - Học trực tuyến OLM