K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2018

Ta có :  \(ac+bd\ge bc+ad\)

\(\Leftrightarrow ac+bd-bc-ad\ge0\)

\(\Leftrightarrow\left(ac-bc\right)-\left(ad-bd\right)\ge0\)

\(\Leftrightarrow c\left(a-b\right)-d\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(c-d\right)\ge0\)( luôn đúng ) ( do a,b,c,d dương và \(a\ge b\)\(c\ge d\))

Vậy ....

18 tháng 2 2019

Thay \(4=4\left(ab+ac+bc\right)\) vì \(ab+ac+bc=1\)=> \(10a^2+10b^2+c^2\ge4\left(ab+ac+bc\right)\)\(\Leftrightarrow20a^2+20b^2+2c^2-8ac-8bc-8ac\ge0\Leftrightarrow\left(16a^2-8ac+c^2\right)+\left(16b^2-8bc+c^2\right)\)

\(+\left(4a^2-8ab+4b^2\right)\)\(\Leftrightarrow\left(4a-c\right)^2+\left(4b-c\right)^2+\left(2a-2b\right)^2\ge0\)vì bất đẳng thức cuối luôn đúng nên bất đẳng thức đầu đúng ( đpcm ). Dấu "=" xảy ra khi 4a=4b=c

18 tháng 2 2019

tích mình vs nha ><

12 tháng 1 2020

phép đặt trên thực ra là chuẩn hóa bdt

14 tháng 8 2019

:). Sử dụng Bất đẳng thức Schur.

Giải:

Đặt: \(a+b+c=p\)

       \(abc=r\)

       \(ab+bc+ac=q\)

Theo bất đẳng thức Schur:

=> \(p^2\ge3q\) , \(2p^3+9r\ge7pq\) => \(p^3-4pq+9r\ge0\)=> \(p^3-4pq+9\left(4-p\right)\ge0\Leftrightarrow p^3-4pq-9p+36\ge0\)(1)

và \(p^3\ge27r\)

Từ giả thiết ta có: \(p+r=4\)=> \(p^3+27\ge27r+27p=27\left(r+p\right)=27.4\)

=> \(p^3+27p-27.4\ge0\)\(\Leftrightarrow\left(p^3-27\right)+\left(27p-27.3\right)\ge0\)

\(\Leftrightarrow\left(p-3\right)\left(p^2+3p+9+27\right)\ge0\Leftrightarrow\left(p-3\right)\left(p^2+3p+36\right)\ge0\Leftrightarrow p-3\ge0\)

\(\Leftrightarrow p\ge3\)

Vì a, b, c >0 => \(abc>0\)=> r>0

=> \(3\le p< 4\)

=> \(\left(p+3\right)\left(p-4\right)\left(p-3\right)\le0\Leftrightarrow p^3-4p^2-9p+36\le0\) (2)

Từ (1), (2) => \(-4pq\ge-4p^2\Leftrightarrow q\le p\) hay  ab+bc+ac\(\le\)a+b+c

"=" xảy ra : \(a=b=c\)

  và \(a+b+c+abc=4\)

<=> a=b=c=1

3 tháng 12 2017

(a+b+c+d)2\(\ge\frac{8}{3}\)(ab+ac+ad+bc+bd+cd)

<=>(a+b)2+2(a+b)(c+d)+(c+d)2\(\ge\).....

<=>a2+b2+c2+d2+2(ab+ac+ad+bc+bd+cd)\(\ge\)....

<=>3a2+3b2+3c2+3d2+6(ab+ac+ad+bc+bd+cd)\(\ge\)8(ab+ac+ad+bc+bd+cd)

<=> 3a2+3b2+3c2+3d2-2ab -2ac-2bc-2ad-2bd-2cd\(\ge\)0

<=> (a2-2ab+b2)+(a2-ac+c2)+(a2-2ad+d2)+(b2-2bc+c2)+(b2-2bd+d2)+(c2-2cd+d2)>=0

<=> (a-b)2+(a-c)2+(a-d)2+(b-c)2+(b-d)2+(c-d)2>=0 (DPCM)

Dau ''='' xay ra khi a=b=c=d