K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a) Giả sử A'=(x'; y'). Khi đó \(T_{\overrightarrow{v}}\left(A\right)=A'\Leftrightarrow\left\{{}\begin{matrix}x'=3-1=2\\y'=5+2=7\end{matrix}\right.\)

Do đó: A' = (2;7)

Tương tự B' =(-2;3)

b) Ta có: \(A=T_{\overrightarrow{v}}\left(C\right)\Leftrightarrow C=^T\overrightarrow{-v}\left(A\right)=\left(4;3\right)\)

c) Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến

Gọi M(x;y), M' = \(^T\overrightarrow{v}\) =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy \(^T\overrightarrow{v}\) (d) = d'.

Cách 2. Dùng tính chất của phép tịnh tiến

Gọi \(^T\overrightarrow{v}\)(d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó \(^T\overrightarrow{v}\) (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8.

31 tháng 3 2017

a) Giả sử A'=(x'; y'). Khi đó

(A) = A' ⇔

Do đó: A' = (2;7)

Tương tự B' =(-2;3)

b) Ta có A = (C) ⇔ C= (A) = (4;3)

c)Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến

Gọi M(x;y), M' = =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy (d) = d'

Cách 2. Dùng tính chất của phép tịnh tiến

Gọi (d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8

NV
25 tháng 8 2020

Gọi G' là trọng tâm tam giác A'B'C' thì G' là ảnh của G qua phép vị tự tâm I tỉ số k

Do G' thuộc trục hoàn nên tọa độ có dạng \(G'\left(a;0\right)\)

Áp dụng công thức tọa độ phép vị tự:

\(\left\{{}\begin{matrix}a-1=k\left(4-1\right)\\0+1=k\left(2+1\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=3k+1\\k=\frac{1}{3}\end{matrix}\right.\)

\(\Rightarrow S_{A'B'C'}=\left|k\right|.S_{ABC}=\frac{1}{3}.36=12\)

Bài 1:Cho đường thẳng (d): x+2y-3=0 tìm ảnh d' qua phép đối xứng tâm I(0;-1) Bài 2: Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): x+y-2=0. Viết phương trình đường thẳng d' là ảnh của d qua phép đồng dạng có được bằng cách thức hiện liên tiếp phép vị tự tâm I(-1;1) tỉ số k=\(\dfrac{1}{2}\)và phép quay tâm O góc 45 độ Bài 3: Trong mặt phẳng tọa độ Oxy cho điểm M(2;1) thực hiện liên tiếp...
Đọc tiếp

Bài 1:Cho đường thẳng (d): x+2y-3=0 tìm ảnh d' qua phép đối xứng tâm I(0;-1)

Bài 2: Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): x+y-2=0. Viết phương trình đường thẳng d' là ảnh của d qua phép đồng dạng có được bằng cách thức hiện liên tiếp phép vị tự tâm I(-1;1) tỉ số k=\(\dfrac{1}{2}\)và phép quay tâm O góc 45 độ

Bài 3: Trong mặt phẳng tọa độ Oxy cho điểm M(2;1) thực hiện liên tiếp phép đối xứng tâm O và phép tịnh tiến theo véc tơ v(2;3) biến M thành điểm nào

Bài 4: Trong mặt phẳng tọa độ Oxy cho đường tròn (C): \((x-1)^{2}\)+\((y+2)^{2}\)=4 thực hiện liên tiếp phép đối xứng trục Oy và phép tịnh tiến theo véc tơ v(2;3) biến (C) thành đường tròn nào

Bài 5: Trong mặt phẳng tọa độ Oxy cho điểm I(1;1) và đường thẳng (d): x+y-4=0 thực hiện liên tiếp phép đối xứng qua tâm I và phép tịnh tiến theo véc tơ (3;2) biến d thành đường thẳng nào

0
Câu 1 : Tính đạo hàm của hàm số y = \(x\sqrt{x^2-2x}\) A. \(\frac{3x^2-4x}{\sqrt{x^2-2x}}\) B. \(\frac{2x^2-2x-1}{\sqrt{x^2-2x}}\) C. \(\frac{2x^2-3x}{\sqrt{x^2-2x}}\) D. \(\frac{2x-2}{\sqrt{x^2-2x}}\) Câu 2 : Cho hàm số f(x) = sin4x + cos4x , g(x) = sin6x + cos6x . Tính biểu thức 3f'(x) - 2g(x) +2 A. 1 B. 0 C. 3 D. 2 Câu 3 : Tính đạo hàm của hàm số sau y = \(\frac{-3x+4}{x-2}\) A. y' =...
Đọc tiếp

Câu 1 : Tính đạo hàm của hàm số y = \(x\sqrt{x^2-2x}\)

A. \(\frac{3x^2-4x}{\sqrt{x^2-2x}}\)

B. \(\frac{2x^2-2x-1}{\sqrt{x^2-2x}}\)

C. \(\frac{2x^2-3x}{\sqrt{x^2-2x}}\)

D. \(\frac{2x-2}{\sqrt{x^2-2x}}\)

Câu 2 : Cho hàm số f(x) = sin4x + cos4x , g(x) = sin6x + cos6x . Tính biểu thức 3f'(x) - 2g(x) +2

A. 1 B. 0 C. 3 D. 2

Câu 3 : Tính đạo hàm của hàm số sau y = \(\frac{-3x+4}{x-2}\)

A. y' = \(\frac{2}{\left(x-2\right)^2}\)

B. y' = \(\frac{-11}{\left(x-2\right)^2}\)

C. y' = \(\frac{-5}{\left(x-2\right)^2}\)

D. y' = \(\frac{10}{\left(x-2\right)^2}\)

Câu 4 : Trên đồ thị của hàm số y = \(\frac{3x}{x-2}\) có điểm M(x0 ; y0) (x0<0) sao cho tiếp tuyến tại đó cùng với các trục tọa độ tạo thành một tam giác có diện tích bằng 3/4 . Khi đó x0 + 2y0 bằng

A. \(-\frac{1}{2}\) B. -1 C. \(\frac{1}{2}\) D. 1

Câu 5 : Biết hàm số f (x) - f (2x) có đạo hàm bằng 18 tại x = 1 và đạo hàm bằng 1000 tại x = 2 . Tính đạo hàm của hàm số f (x) - f (4x) tại x = 1

A. -2018 B. 2018 C. 1018 D. -1018

Câu 6 : Tìm m để hàm số y = \(\frac{\left(m+1\right)x^3}{3}-\left(m+1\right)x^2+\left(3m+2\right)+1\) có y' \(\le0\) , \(\forall x\in R\)

A. \(m\le-\frac{1}{2}\)

B. m < -1

C. m \(\le1\)

D. m \(\le-1\)

Câu 7 : Gọi d là tiếp tuyến của đồ thị hàm số y = f (x) = -x3 + x tại điểm M(-2;6) . Hệ số góc của (d) là

A. -11 B. 11 C. 6 D. -12

Câu 8 : Cho hàm số f (x) = -x3 + 3mx2 - 12x + 3 với m là tham số thực . Số giá trị nguyên của m để f' (x)\(\le0\) với \(\forall x\in R\)

A. 1 B. 5 C. 4 D. 3

Câu 9 : Phương trình tiếp tuyến của đường cong y = x3 + 3x2 -2 tại điểm có hoành độ x0 = 1 là

A. y = -9x + 7 B. y = -9x - 7 C. y = 9x + 7 D. y = 9x - 7

Câu 10 : Có bao nhiêu điểm thuộc đồ thị hàm số y = \(\frac{2x-1}{x-1}\) thỏa mãn tiếp tuyến với đồ thị có hệ số góc bằng 2019 ?

A. Vô số B. 0 C. 1 D. 2

Câu 11 : Phương trình tiếp tuyến của đồ thị hàm số y = \(\frac{x-1}{x+2}\) tại điểm có hoành độ bằng -3 là

A. y = -3x + 13 B. y = -3x - 5 C. y = 3x + 5 D. y = 3x + 13

Câu 12 : Cho hàm số y = -2x3 + 6x2 -5 có đồ thị (C) . Phương trình tiếp tuyến của (C) tại điểm M thuộc (C) và có hoành độ bằng 3 là

A. y = -18x + 49 B. y = 18x + 49 C. y = 18x - 49 D. y = -18x - 49

Câu 13 : Hệ số góc k của tiếp tuyến đồ thị hàm số y = x3 + 1 tại điểm M(1;2) là

A. k = 5 B. k = 4 C. k = 3 D. k = 12

Câu 14 : Cho hàm số y = \(-\frac{1}{3}x^3-2x^2-3x+1\) có đồ thị (C) . Trong các tiếp tuyến với (C) , tiếp tuyến có hệ số góc lớn nhất bằng bao nhiêu ?

A. k = 3 B. k = 2 C. k = 0 D. k = 1

Câu 15 : Cho hàm số y = \(\frac{2x-3}{x-2}\) có đồ thị (C) và hai đường thẳng d1 : x = 2 , d2 : y = 2 . Tiếp tuyến bất kì của (C) cắt d1 và d2 lần lượt tại A và B . Khi AB có độ dài nhỏ nhất thì tổng các hoành độ tiếp điểm bằng

A. -3 B. -2 C. 1 D. 4

Câu 16 : Tính vi phân của hàm số y = x2

A. dy = 2xdx B. dy = dx C. dy = -2xdx D. dy = xdx

Câu 17 : Cho hình chóp S.ABC có SA\(\perp\) (ABC) . Gọi H , K lần lượt là trực tâm các tam giác SBC và ABC . Mệnh đề nào sai trong các mệnh đề sau ?

A. \(BC\perp\left(SAH\right)\) B. \(HK\perp\left(SBC\right)\)

C. \(BC\perp\left(SAB\right)\) D. SH , AK và BC đồng quy

Câu 18 : Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O . Biết rằng SA = SC , SB = SD . Khẳng định nào sau đây là đúng ?

A. \(CD\perp AC\) B. \(CD\perp\left(SBD\right)\) C. \(AB\perp\left(SAC\right)\) D. \(SO\perp\left(ABCD\right)\)

Câu 19 : Cho hình chóp S.ABCD , ABCD là hình thang vuông tại A và B , AD = 2a , AB = BC = a , \(SA\perp\left(ABCD\right)\) . Trong các khẳng định sau , khẳng định nào sai ?

A. \(CD\perp\left(SBC\right)\) B. \(BC\perp\left(SAB\right)\) C. \(CD\perp\left(SAC\right)\) D. \(AB\perp\left(SAD\right)\)

Câu 20 : Hình chóp S.ABCD có đáy là hình vuông , hai mặt bên (SAB) và (SAD) vuông góc với mặt đáy . AH , AK lần lượt là đường cao của tam giác SAB , tam giác SAD . Mệnh đề nào sau đây là sai ?

A. \(HK\perp SC\) B. \(SA\perp AC\) C. \(BC\perp AH\) D. \(AK\perp BD\)

Câu 21 : Cho hình chóp S.ABC có các cạnh SA , SB , SC đôi một vuông góc và SA = SB = SC . Gọi I là trung điểm của AB . Khi đó góc giữa 2 đường thẳng SI và BC bằng

A. 1200 B. 600 C. 900 D. 300

Câu 22 : Cho hình lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng a . Gọi M là trung điểm của AB và \(\alpha\) là góc tạo bởi MC' và mặt phẳng (ABC) . Khi đó \(tan\alpha\) bằng

A. \(\frac{2\sqrt{7}}{7}\) B. \(\frac{\sqrt{3}}{2}\) C. \(\sqrt{\frac{3}{7}}\) D. \(\frac{2\sqrt{3}}{3}\)

Câu 23 : Cho hình chóp S.ABC có đáy là tam giác vuông tại B , AB = 3a , BC = 4a , mặt phẳng (SBC) vuông góc với mặt phẳng (ABC) . Biết SB = \(2a\sqrt{3}\)\(\widehat{SBC}=30^0\) . Tính \(d\left(B;\left(SAC\right)\right)\)

A. \(\frac{3a\sqrt{7}}{14}\) B. \(6a\sqrt{7}\) C. \(\frac{6a\sqrt{7}}{7}\) D. \(a\sqrt{7}\)

Câu 24 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và các cạnh bên bằng nhau . Gọi O là giao điểm của hai đường chéo của đáy . Tìm mặt phẳng vuông góc với SO ?

A. (SAC) B. (SBC) C. (ABCD) D. (SAB)

Câu 25 : Cho hình chóp S.ABC có đáy ABC là tam giác nhọn , cạnh bên SA = SB = SC . Gọi H là hình chiếu vuông góc của S trên mặt phẳng (ABC) . Khi đó

A. H là tâm đường tròn ngoại tiếp tam giác ABC

B. H là tâm đường tròn nội tiếp tam giác ABC

C. H là trực tâm của tam giác ABC

D. H là trọng tâm của tam giác ABC

Câu 26 : Cho tứ diện ABCD có AB , BC , CD đôi một vuông góc với nhau và AB = a , BC = b , CD = c . Độ dài đoạn thẳng AD bằng

A. \(\sqrt{a^2+b^2+c^2}\)

B. \(\sqrt{-a^2+b^2+c^2}\)

C. \(\sqrt{a^2+b^2-c^2}\)

D. \(\sqrt{a^2-b^2+c^2}\)

help me !!!!!! giải chi tiết từng câu giúp mình với ạ

10
NV
12 tháng 6 2020

25.

H là hình chiếu của S lên (ABC)

Do \(SA=SB=SC\Rightarrow HA=HB=HC\)

\(\Rightarrow\) H là tâm đường tròn ngoại tiếp tam giác ABC

26.

\(\left\{{}\begin{matrix}AB\perp BC\\AB\perp CD\end{matrix}\right.\) \(\Rightarrow AB\perp\left(BCD\right)\) \(\Rightarrow AB\perp BD\)

\(\Rightarrow\Delta ABD\) vuông tại B

Pitago tam giác vuông BCD (vuông tại C):

\(BC^2+CD^2=BD^2\Rightarrow BD^2=b^2+c^2\)

Pitago tam giác vuông ABD:

\(AD^2=AB^2+BC^2=a^2+b^2+c^2\)

\(\Rightarrow AD=\sqrt{a^2+b^2+c^2}\)

NV
12 tháng 6 2020

23.

Gọi H là chân đường cao hạ từ S xuống BC

\(\Rightarrow BH=SB.cos30^0=3a\) ; \(SH=SB.sin30^0=a\sqrt{3}\) ; \(CH=4a-3a=a\)

\(\Rightarrow BC=4HC\Rightarrow d\left(B;\left(SAC\right)\right)=4d\left(H;\left(SAC\right)\right)\)

Từ H kẻ \(HE\perp AC\) ; từ H kẻ \(HF\perp SE\Rightarrow HF\perp\left(SAC\right)\)

\(\Rightarrow HF=d\left(H;\left(SAC\right)\right)\)

\(HE=CH.sinC=\frac{CH.AB}{AC}=\frac{a.3a}{5a}=\frac{3a}{5}\)

\(\frac{1}{HF^2}=\frac{1}{HE^2}+\frac{1}{SH^2}\Rightarrow HF=\frac{HE.SH}{\sqrt{HE^2+SH^2}}=\frac{3a\sqrt{7}}{14}\)

\(\Rightarrow d\left(B;\left(SAC\right)\right)=4HF=\frac{6a\sqrt{7}}{7}\)

24.

\(SA=SC\Rightarrow SO\perp AC\)

\(SB=SD\Rightarrow SO\perp BD\)

\(\Rightarrow SO\perp\left(ABCD\right)\)

NV
27 tháng 4 2020

a/ \(y=3x+2\)

b/ \(y=-\frac{1}{4}x+1\)

c/ \(y=\frac{1}{6}x+\frac{3}{2}\)

d/ \(y=-32x-48\)

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Bài 5:

Vecto tịnh tiến là:

$\overrightarrow{AA'}=(x_{A'}-x_A, y_{A'}-y_A)=(2-3, 3-2)=(-1,1)$

$B'$ là ảnh của $B$ qua phép tịnh tiến theo vecto $overrightarrow{AA'}$ nên:

$\overrightarrow{BB'}=\overrightarrow{AA'}$

$\Leftrightarrow (x_{B'}-x_B, y_{B'}-y_B)=(-1,1)$

\(\Leftrightarrow \left\{\begin{matrix} x_{B'}=x_B-1=2-1=1\\ y_{B'}=y_B+1=5+1=6\end{matrix}\right.\)

Vậy tọa độ điểm $B'$ là $(1,6)$

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Bài 4:

Đường tròn $(C)$ có tâm $I(1;2)$

Đường tròn $(C')$ có tâm $I'(0;3)$

$R=R'=2$

Vecto tịnh tiến biến đường tròn $(C)$ thành $(C')$ là:

$\overrightarrow{v}=\overrightarrow{II'}=(-1,1)$