Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left(a+1\right)^2-4a\ge0\)
hay \(\left(a-1\right)^2>=0\)(luôn đúng)
b: \(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(c^2+d^2\right)\left(a^2+b^2\right)=VP\)
Câu hỏi của Hattory Heiji - Toán lớp 8 - Học toán với OnlineMath
Kẻ đường cao BD ứng với AC. Do góc A tù \(\Rightarrow\) D nằm ngoài đoạn thẳng AC hay \(CD=AD+AC\) và \(\widehat{DAB}=180^0-120^0=60^0\)
Áp dụng định lý Pitago:
\(AB^2=BD^2+AD^2\) \(\Rightarrow BD^2=AB^2-AD^2\)
Trong tam giác vuông ABD:
\(cos\widehat{BAD}=\dfrac{AD}{AB}\Rightarrow\dfrac{AD}{AB}=cos60^0=\dfrac{1}{2}\Rightarrow AD=\dfrac{1}{2}AB\)
\(\Rightarrow BD^2=AB^2-\left(\dfrac{1}{2}AB^2\right)=\dfrac{3}{4}AB^2\)
Pitago tam giác BCD:
\(BC^2=BD^2+CD^2=\dfrac{3}{4}AB^2+\left(AD+AC\right)^2\)
\(=\dfrac{3}{4}AB^2+\left(\dfrac{1}{2}AB+AC\right)^2\)
\(=\dfrac{3}{4}AB^2+\dfrac{1}{4}AB^2+AB.AC+AC^2\)
\(=AB^2+AB.AC+AC^2\)
Hay \(a^2=b^2+c^2+bc\)
\(1.a,\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=\left(ac\right)^2+2abcd+\left(bd\right)^2+\left(ad\right)^2-2abcd+\left(bc\right)^2\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(b,\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ad-bc\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow-\left(ad-bc\right)^2\le0\left(luôn-đúng\right)\)
\(dấu"='\) \(xảy\) \(ra\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(c2:x+y=2\Rightarrow\left(x+y\right)^2=4\)
\(\Rightarrow\left(x+y\right)^2+\left(x-y\right)^2\ge4\)
\(\Leftrightarrow x^2+2xy+y^2+x^2-2xy+y^2\ge4\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge4\Leftrightarrow x^2+y^2\ge2\)
\(dấu"="\) \(xảy\) \(ra\Leftrightarrow x=y=1\)
Câu 1:
a)Ta có (ac+bd)2+(ad-bc)2=(ac)2+2abcd+(bd)2+(ad)2-2abcd+(bc)2
=(ac)2+(bd)2+(ad)2+(bc)2
=a2(c2+d2)+b2(c2+d2)
=(a2+b2)(c2+d2) (đpcm)
b)Ta có (ac+bd)2 = (ac)2+2abcd+(bd)2
Lại có (a2+b2)(c2+d2) = (ac)2+(bd)2+(ad)2+(bc)2
Ta có (ac+bd)2 ≤ (a2+b2)(c2+d2)
<=>(a2+b2)(c2+d2) - (ac+bd)2 ≥ 0
<=>(ac)2+(bd)2+(ad)2+(bc)2-[(ac)2+2abcd+(bd)2]
<=>(ad)2 - 2abcd +(bc)2 ≥ 0
<=>(ad-bc)2 ≥ 0 (Luôn đúng) => đpcm
Câu 2:
Áp dụng BĐT Bunhiacôpxki, ta có (x+ y)2 ≤ (x2 + y2)(12 + 12) => 4 ≤ 2.S => 2 ≤ S
Dấu ''='' xảy ra <=> x=y=1
Vậy Min S=2 <=> x=y=1